# Dissertation Visualisations ```elixir Mix.install([ {:tucan, "~> 0.3.0"}, {:kino_vega_lite, "~> 0.1.8"}, {:json, "~> 1.4"}, {:explorer, "~> 0.8.0"}, {:kino_explorer, "~> 0.1.11"}, {:math, "~> 0.7.0"} ]) ``` ## Variables ```elixir require Explorer.DataFrame require Explorer.Series require VegaLite alias Explorer.DataFrame, as: DF alias Explorer.Series, as: SE job_id = "current" job_dir = Path.expand(~c"./" ++ job_id) |> Path.absname() sections_dir = Path.join(job_dir, "sections") cm_dir = Path.join([job_dir, "candelabra", "benchmark_results"]) criterion_dir = Path.join(job_dir, "criterion") ``` ## Read cost model data ```elixir {:ok, cost_model_files} = File.ls(cm_dir) cost_model_files = cost_model_files |> Enum.map(fn fname -> Path.join(cm_dir, fname) |> Path.absname() end) cost_model_files ``` ```elixir # Parse cost model information cost_models = cost_model_files |> Enum.map(fn fname -> impl = Path.basename(fname) |> String.replace("_", ":") contents = File.read!(fname) contents = JSON.decode!(contents) contents["model"]["by_op"] |> Enum.map(fn {op, %{"coeffs" => coeffs}} -> %{ op: op, impl: impl, coeffs: coeffs } end) |> DF.new() end) |> DF.concat_rows() ``` ```elixir # Parse cost model information cost_model_points = cost_model_files |> Enum.map(fn fname -> impl = Path.basename(fname) |> String.replace("_", ":") contents = File.read!(fname) contents = JSON.decode!(contents) contents["results"]["by_op"] |> Enum.flat_map(fn {op, results} -> Enum.map(results, fn [n, cost] -> %{ op: op, impl: String.split(impl, "::") |> List.last(), n: n, t: cost } end) end) |> DF.new() end) |> DF.concat_rows() |> DF.mutate(t: cast(t, {:duration, :nanosecond})) ``` ## Cost model exploratory plots ```elixir defmodule CostModel do @defaults %{y_domain: nil, ns: 1..60_000//100, draw_points: true} @all_impls Enum.sort([ "SortedVec", "SortedVecSet", "SortedVecMap", "Vec", "VecSet", "VecMap", "BTreeSet", "BTreeMap", "HashSet", "HashMap", "LinkedList" ]) def friendly_impl_name(impl) do String.split(impl, "::") |> List.last() end def points_for(cost_models, ns, impl, op) do %{"coeffs" => [coeffs]} = DF.filter(cost_models, impl == ^impl and op == ^op) |> DF.to_columns() Enum.map(ns, fn n -> t = (coeffs |> Enum.take(3) |> Enum.with_index() |> Enum.map(fn {coeff, idx} -> coeff * n ** idx end) |> Enum.sum()) + Enum.at(coeffs, 3) * Math.log2(n) %{ impl: friendly_impl_name(impl), op: op, n: n, t: max(t, 0) } end) |> DF.new() end def plot(cost_models, cost_model_points, impls, op, opts \\ []) do %{y_domain: y_domain, ns: ns, draw_points: draw_points} = Enum.into(opts, @defaults) plot = Tucan.layers( [ cost_models |> DF.filter(op == ^op) |> DF.distinct(["impl"]) |> DF.to_rows() |> Enum.map(fn %{"impl" => impl} -> points_for(cost_models, ns, impl, op) end) |> DF.concat_rows() |> DF.filter(impl in ^impls) |> Tucan.lineplot("n", "t", color_by: "impl", clip: true) ] ++ if(draw_points, do: [ Tucan.scatter( cost_model_points |> DF.filter(op == ^op and impl in ^impls) |> DF.group_by(["impl", "n"]) |> DF.summarise(t: mean(cast(t, :f32))), "n", "t", color_by: "impl", clip: true ) ], else: [] ) ) plot = plot |> Tucan.Axes.set_y_title("Estimated cost") |> Tucan.Axes.set_x_title("Size of container (n)") |> Tucan.set_size(500, 250) |> Tucan.Legend.set_title(:color, "Implementation") case y_domain do [lo, hi] -> Tucan.Scale.set_y_domain(plot, lo, hi) _ -> plot end end def split_plot(cost_models, cost_model_points, impl_splits, op) do @all_impls = List.flatten(impl_splits) |> Enum.sort() Enum.map(impl_splits, &plot(cost_models, cost_model_points, &1, op)) |> Tucan.vconcat() end end ``` ```elixir graph = CostModel.split_plot( cost_models, cost_model_points, [ ["SortedVec", "SortedVecSet", "SortedVecMap", "VecSet", "VecMap"], [ "Vec", "LinkedList" ], ["BTreeSet", "BTreeMap", "HashSet", "HashMap"] ], "insert" ) |> VegaLite.resolve(:scale, color: :independent) VegaLite.Export.save!(graph, "../thesis/assets/insert.json") graph ``` ```elixir graph = CostModel.split_plot( cost_models, cost_model_points, [ ["SortedVec", "SortedVecSet", "SortedVecMap", "VecSet"], [ "Vec", "LinkedList", "VecMap" ], ["BTreeSet", "BTreeMap", "HashSet", "HashMap"] ], "contains" ) |> VegaLite.resolve(:scale, color: :independent) VegaLite.Export.save!(graph, "../thesis/assets/contains.json") graph ``` ## Read benchmark data ```elixir # Read in the results of every individual criterion benchmark raw_benchmarks = File.ls!(criterion_dir) |> Enum.map(fn name -> File.ls!(Path.join(criterion_dir, name)) |> Enum.map(fn p -> %{bench: name, subbench: p} end) end) |> List.flatten() |> Enum.map(fn %{bench: bench, subbench: subbench} -> File.ls!(Path.join([criterion_dir, bench, subbench])) |> Enum.filter(fn x -> String.contains?(x, "Mapping2D") end) |> Enum.map(fn x -> Path.join([criterion_dir, bench, subbench, x]) end) |> Enum.map(fn dir -> raw_results = Path.join(dir, "estimates.json") |> File.read!() |> JSON.decode!() %{ bench_id: bench <> "/" <> subbench, proj: String.split(bench, "-") |> hd, using: Regex.scan(~r/\"(\w*)\", ([^)]*)/, Path.basename(dir)) |> Enum.map(fn [_, ctn, impl] -> %{ctn: ctn, impl: impl} end), mean: raw_results["mean"]["point_estimate"], stderr: raw_results["mean"]["standard_error"] } end) end) |> List.flatten() |> DF.new() |> DF.mutate( mean: cast(mean, {:duration, :nanosecond}), stderr: cast(stderr, {:duration, :nanosecond}) ) ``` ```elixir # `using` is a list of structs, but we aren't gonna make use of this mostly # and we want to be able to group by that column, so add a new column that's just a nice # string representation # also parse out the n value, which all of our benchmarks have display_using = fn using -> using |> Enum.map(fn %{"ctn" => ctn, "impl" => impl} -> ctn <> "=" <> impl end) |> Enum.join(", ") end ``` ```elixir # Aggregate benchmark results by project, since we can only do assignments by project # Unfortunately we can't group by lists, so we need to do some weird shit. # This is basically equivalent to: # benchmarks = raw_benchmarks # |> DF.group_by(["proj", "using"]) # |> DF.summarise(time: sum(mean)) # Build list of using values to index into usings = raw_benchmarks["using"] |> SE.to_list() |> Enum.uniq() benchmarks = raw_benchmarks # Make a column corresponding to using that isn't a list |> DF.put( "using_idx", raw_benchmarks["using"] |> SE.to_list() |> Enum.map(fn using -> Enum.find_index(usings, &(&1 == using)) end) ) # Get the total benchmark time for each project and assignment |> DF.group_by(["proj", "using_idx"]) |> DF.summarise(time: sum(cast(mean, :f32))) # Convert using_idx back to original using values |> DF.to_rows() |> Enum.map(fn row = %{"using_idx" => using_idx} -> Map.put(row, "using", Enum.at(usings, using_idx)) end) |> DF.new() |> DF.select(["proj", "time", "using"]) ``` ## Read cost estimate data ```elixir # Cost estimates by project, ctn, and implementation projs = SE.distinct(benchmarks["proj"]) cost_estimates = SE.transform(projs, fn proj_name -> [_, table | _] = Path.join(sections_dir, "compare-" <> proj_name) |> File.read!() |> String.split("& file \\\\\n\\hline\n") table |> String.split("\n\\end{tabular}") |> hd |> String.split("\n") |> Enum.map(fn x -> String.split(x, " & ") end) |> Enum.map(fn [ctn, impl, cost | _] -> %{ proj: proj_name, ctn: ctn, impl: impl |> String.replace("\\_", "_"), cost: if String.contains?(cost, ".") do String.to_float(cost) else String.to_integer(cost) end } end) end) |> SE.to_list() |> List.flatten() |> DF.new() ``` ```elixir # Double-check that we have all of the cost estimates for everything mentioned in the assignments estimate_impls = SE.distinct(cost_estimates["impl"]) true = (raw_benchmarks |> DF.explode("using") |> DF.unnest("using"))["impl"] |> SE.distinct() |> SE.to_list() |> Enum.all?(&SE.any?(SE.equal(estimate_impls, &1))) ``` ```elixir # Gets the cost of assignment from cost estimates cost_of_assignment = fn proj, assignment -> assignment |> Enum.map(fn %{"ctn" => ctn, "impl" => impl} -> DF.filter(cost_estimates, proj == ^proj and ctn == ^ctn and impl == ^impl)["cost"][0] end) |> Enum.sum() end cost_of_assignment.("example_stack", [%{"ctn" => "StackCon", "impl" => "std::vec::Vec"}]) ``` ```elixir # For each benchmarked assignment, estimate the cost. estimated_costs = benchmarks |> DF.to_rows_stream() |> Enum.map(fn %{"proj" => proj, "using" => using} -> %{ proj: proj, using: using, estimated_cost: cost_of_assignment.(proj, using) } end) |> DF.new() ``` ## Estimates vs results (ignoring adaptive containers) ```elixir # Don't worry about adaptive containers for now singular_estimated_costs = estimated_costs |> DF.to_rows_stream() |> Enum.filter(fn %{"using" => using} -> Enum.all?(using, fn %{"impl" => impl} -> !String.contains?(impl, "until") end) end) |> DF.new() singular_benchmarks = benchmarks |> DF.to_rows_stream() |> Enum.filter(fn %{"using" => using} -> Enum.all?(using, fn %{"impl" => impl} -> !String.contains?(impl, "until") end) end) |> DF.new() DF.n_rows(singular_benchmarks) ``` ```elixir # Best and predicted best implementation for each container type selection_comparison = singular_benchmarks |> DF.explode("using") |> DF.unnest("using") |> DF.group_by(["proj"]) |> DF.filter(time == min(time)) |> DF.join( cost_estimates |> DF.filter(not contains(impl, "until")) |> DF.group_by(["proj", "ctn"]) |> DF.filter(cost == min(cost)) |> DF.rename(%{"impl" => "predicted_impl"}) ) |> DF.select(["proj", "ctn", "impl", "predicted_impl"]) |> DF.rename(%{"impl" => "best_impl"}) ``` ```elixir # Tools for printing out latex defmodule Latex do def escape_latex(str) do String.replace(str, ~r/(\\|{|}|_|\^|#|&|\$|%|~)/, "\\\\\\1") end def table(df) do cols = DF.names(df) "\\begin{tabular}{|" <> String.duplicate("c|", length(cols)) <> "}\n" <> Enum.join(Enum.map(cols, &escape_latex/1), " & ") <> " \\\\\n\\hline\n" <> (DF.to_rows(df) |> Enum.map(fn row -> cols |> Enum.map(&escape_latex(Kernel.to_string(row[&1]))) |> Enum.join(" & ") end) |> Enum.join(" \\\\\n")) <> " \\\\\n\\end{tabular}" end end Latex.table(selection_comparison) selection_comparison |> DF.put( "best_impl", SE.transform(selection_comparison["best_impl"], &CostModel.friendly_impl_name/1) ) |> DF.put( "predicted_impl", SE.transform(selection_comparison["predicted_impl"], &CostModel.friendly_impl_name/1) ) |> DF.put( "mark", SE.not_equal(selection_comparison["best_impl"], selection_comparison["predicted_impl"]) |> SE.transform(&if &1, do: "*", else: "") ) |> DF.rename(%{ "mark" => " ", "proj" => "Project", "ctn" => "Container Type", "best_impl" => "Best implementation", "predicted_impl" => "Predicted best" }) |> Latex.table() |> IO.puts() ``` ## Adaptive Containers ```elixir # Projects where an adaptive container was suggested adaptive_projs = (estimated_costs |> DF.to_rows() |> Enum.filter(fn %{"using" => using} -> using |> Enum.map(fn %{"impl" => impl} -> String.contains?(impl, "until") end) |> Enum.any?() end) |> DF.new() |> DF.distinct(["proj"]))["proj"] ``` ```elixir adaptive_estimated_costs = estimated_costs |> DF.filter(proj in ^adaptive_projs) adaptive_raw_benchmarks = raw_benchmarks |> DF.filter(proj in ^adaptive_projs) display_using = fn using -> using |> Enum.map(fn %{"ctn" => ctn, "impl" => impl} -> ctn <> "=" <> impl end) |> Enum.join(", ") end adaptive_raw_benchmarks = adaptive_raw_benchmarks |> DF.put( "n", adaptive_raw_benchmarks["bench_id"] |> SE.split("/") |> SE.transform(&Enum.at(&1, 1)) ) |> DF.put( "using", adaptive_raw_benchmarks["using"] |> SE.transform(display_using) ) ``` ```elixir best_usings = adaptive_raw_benchmarks # get best set of assignments for each project |> DF.group_by(["proj", "using"]) |> DF.filter(not contains(using, "until")) |> DF.summarise(total: sum(cast(mean, :f32))) |> DF.group_by(["proj"]) |> DF.filter(total == min(total)) |> DF.discard("total") |> DF.rename(%{"using" => "best_using"}) # select adaptive container and the best assignment for each project |> DF.join(adaptive_raw_benchmarks) |> DF.filter(using == best_using or contains(using, "until")) # summary data point |> DF.mutate(value: cast(mean, :string) <> " +/- " <> cast(stderr, :string)) |> DF.select(["proj", "using", "n", "value"]) ``` ```elixir best_usings |> DF.filter(proj == "aoc_2022_09") |> DF.pivot_wider("n", "value") ```