#pragma once ///@file #include #include #include #include #include #include "gc-alloc.hh" #include "symbol-table.hh" #include "value/context.hh" #include "input-accessor.hh" #include "source-path.hh" #include "print-options.hh" #include "checked-arithmetic.hh" #include "concepts.hh" #include namespace nix { class BindingsBuilder; typedef enum { tInt = 1, tBool, tString, tPath, tNull, tAttrs, tList1, tList2, tListN, tThunk, tApp, tLambda, tPrimOp, tPrimOpApp, tExternal, tFloat } InternalType; /** * This type abstracts over all actual value types in the language, * grouping together implementation details like tList*, different function * types, and types in non-normal form (so thunks and co.) */ typedef enum { nThunk, nInt, nFloat, nBool, nString, nPath, nNull, nAttrs, nList, nFunction, nExternal } ValueType; class Bindings; struct Env; struct Expr; struct ExprLambda; struct ExprBlackHole; struct PrimOp; class Symbol; class PosIdx; struct Pos; class StorePath; class Store; class EvalState; class XMLWriter; class Printer; using NixInt = checked::Checked; using NixFloat = double; /** * External values must descend from ExternalValueBase, so that * type-agnostic nix functions (e.g. showType) can be implemented */ class ExternalValueBase { friend std::ostream & operator << (std::ostream & str, const ExternalValueBase & v); friend class Printer; protected: /** * Print out the value */ virtual std::ostream & print(std::ostream & str) const = 0; public: /** * Return a simple string describing the type */ virtual std::string showType() const = 0; /** * Return a string to be used in builtins.typeOf */ virtual std::string typeOf() const = 0; /** * Coerce the value to a string. Defaults to uncoercable, i.e. throws an * error. */ virtual std::string coerceToString(EvalState & state, const PosIdx & pos, NixStringContext & context, bool copyMore, bool copyToStore) const; /** * Compare to another value of the same type. Defaults to uncomparable, * i.e. always false. */ virtual bool operator ==(const ExternalValueBase & b) const; /** * Print the value as JSON. Defaults to unconvertable, i.e. throws an error */ virtual nlohmann::json printValueAsJSON(EvalState & state, bool strict, NixStringContext & context, bool copyToStore = true) const; /** * Print the value as XML. Defaults to unevaluated */ virtual void printValueAsXML(EvalState & state, bool strict, bool location, XMLWriter & doc, NixStringContext & context, PathSet & drvsSeen, const PosIdx pos) const; virtual ~ExternalValueBase() { }; }; std::ostream & operator << (std::ostream & str, const ExternalValueBase & v); /** This is just the address of eBlackHole. It exists because eBlackHole has an * incomplete type at usage sites so is not possible to cast. */ extern Expr *eBlackHoleAddr; struct NewValueAs { struct integer_t { }; constexpr static integer_t integer{}; struct floating_t { }; constexpr static floating_t floating{}; struct boolean_t { }; constexpr static boolean_t boolean{}; struct string_t { }; constexpr static string_t string{}; struct path_t { }; constexpr static path_t path{}; struct list_t { }; constexpr static list_t list{}; struct attrs_t { }; constexpr static attrs_t attrs{}; struct thunk_t { }; constexpr static thunk_t thunk{}; struct null_t { }; constexpr static null_t null{}; struct app_t { }; constexpr static app_t app{}; struct primop_t { }; constexpr static primop_t primop{}; struct primOpApp_t { }; constexpr static primOpApp_t primOpApp{}; struct lambda_t { }; constexpr static lambda_t lambda{}; struct external_t { }; constexpr static external_t external{}; struct blackhole_t { }; constexpr static blackhole_t blackhole{}; }; struct Value { private: InternalType internalType; friend std::string showType(const Value & v); public: // Discount `using NewValueAs::*;` // NOLINTNEXTLINE(bugprone-macro-parentheses) #define USING_VALUETYPE(name) using name = NewValueAs::name USING_VALUETYPE(integer_t); USING_VALUETYPE(floating_t); USING_VALUETYPE(boolean_t); USING_VALUETYPE(string_t); USING_VALUETYPE(path_t); USING_VALUETYPE(list_t); USING_VALUETYPE(attrs_t); USING_VALUETYPE(thunk_t); USING_VALUETYPE(primop_t); USING_VALUETYPE(app_t); USING_VALUETYPE(null_t); USING_VALUETYPE(primOpApp_t); USING_VALUETYPE(lambda_t); USING_VALUETYPE(external_t); USING_VALUETYPE(blackhole_t); #undef USING_VALUETYPE /// Default constructor which is still used in the codebase but should not /// be used in new code. Zero initializes its members. [[deprecated]] Value() : internalType(static_cast(0)) , _empty{ 0, 0 } { } /// Constructs a nix language value of type "int", with the integral value /// of @ref i. Value(integer_t, NixInt i) : internalType(tInt) , _empty{ 0, 0 } { // the NixInt ctor here is is special because NixInt has a ctor too, so // we're not allowed to have it as an anonymous aggreagte member. we do // however still have the option to clear the data members using _empty // and leaving the second word of data cleared by setting only integer. integer = i; } /// Constructs a nix language value of type "float", with the floating /// point value of @ref f. Value(floating_t, NixFloat f) : internalType(tFloat) , fpoint(f) , _float_pad(0) { } /// Constructs a nix language value of type "bool", with the boolean /// value of @ref b. Value(boolean_t, bool b) : internalType(tBool) , boolean(b) , _bool_pad(0) { } /// Constructs a nix language value of type "string", with the value of the /// C-string pointed to by @ref strPtr, and optionally with an array of /// string context pointed to by @ref contextPtr. /// /// Neither the C-string nor the context array are copied; this constructor /// assumes suitable memory has already been allocated (with the GC if /// enabled), and string and context data copied into that memory. Value(string_t, char const * strPtr, char const ** contextPtr = nullptr) : internalType(tString) , string({ .s = strPtr, .context = contextPtr }) { } /// Constructx a nix language value of type "string", with a copy of the /// string data viewed by @ref copyFrom. /// /// The string data *is* copied from @ref copyFrom, and this constructor /// performs a dynamic (GC) allocation to do so. Value(string_t, std::string_view copyFrom, NixStringContext const & context = {}) : internalType(tString) , string({ .s = gcCopyStringIfNeeded(copyFrom), .context = nullptr }) { if (context.empty()) { // It stays nullptr. return; } // Copy the context. this->string.context = gcAllocType(context.size() + 1); size_t n = 0; for (NixStringContextElem const & contextElem : context) { this->string.context[n] = gcCopyStringIfNeeded(contextElem.to_string()); n += 1; } // Terminator sentinel. this->string.context[n] = nullptr; } /// Constructx a nix language value of type "string", with the value of the /// C-string pointed to by @ref strPtr, and optionally with a set of string /// context @ref context. /// /// The C-string is not copied; this constructor assumes suitable memory /// has already been allocated (with the GC if enabled), and string data /// has been copied into that memory. The context data *is* copied from /// @ref context, and this constructor performs a dynamic (GC) allocation /// to do so. Value(string_t, char const * strPtr, NixStringContext const & context) : internalType(tString) , string({ .s = strPtr, .context = nullptr }) { if (context.empty()) { // It stays nullptr return; } // Copy the context. this->string.context = gcAllocType(context.size() + 1); size_t n = 0; for (NixStringContextElem const & contextElem : context) { this->string.context[n] = gcCopyStringIfNeeded(contextElem.to_string()); n += 1; } // Terminator sentinel. this->string.context[n] = nullptr; } /// Constructs a nix language value of type "path", with the value of the /// C-string pointed to by @ref strPtr. /// /// The C-string is not copied; this constructor assumes suitable memory /// has already been allocated (with the GC if enabled), and string data /// has been copied into that memory. Value(path_t, char const * strPtr) : internalType(tPath) , _path(strPtr) , _path_pad(0) { } /// Constructs a nix language value of type "path", with the path /// @ref path. /// /// The data from @ref path *is* copied, and this constructor performs a /// dynamic (GC) allocation to do so. Value(path_t, SourcePath const & path) : internalType(tPath) , _path(gcCopyStringIfNeeded(path.path.abs())) , _path_pad(0) { } /// Constructs a nix language value of type "list", with element array /// @ref items. /// /// Generally, the data in @ref items is neither deep copied nor shallow /// copied. This construct assumes the std::span @ref items is a region of /// memory that has already been allocated (with the GC if enabled), and /// an array of valid Value pointers has been copied into that memory. /// /// Howver, as an implementation detail, if @ref items is only 2 items or /// smaller, the list is stored inline, and the Value pointers in /// @ref items are shallow copied into this structure, without dynamically /// allocating memory. Value(list_t, std::span items) { if (items.size() == 1) { this->internalType = tList1; this->smallList[0] = items[0]; this->smallList[1] = nullptr; } else if (items.size() == 2) { this->internalType = tList2; this->smallList[0] = items[0]; this->smallList[1] = items[1]; } else { this->internalType = tListN; this->bigList.size = items.size(); this->bigList.elems = items.data(); } } /// Constructs a nix language value of type "list", with an element array /// initialized by applying @ref transformer to each element in @ref items. /// /// This allows "in-place" construction of a nix list when some logic is /// needed to get each Value pointer. This constructor dynamically (GC) /// allocates memory for the size of @ref items, and the Value pointers /// returned by @ref transformer are shallow copied into it. template< std::ranges::sized_range SizedIterableT, InvocableR TransformerT > Value(list_t, SizedIterableT & items, TransformerT const & transformer) { if (items.size() == 1) { this->internalType = tList1; this->smallList[0] = transformer(*items.begin()); this->smallList[1] = nullptr; } else if (items.size() == 2) { this->internalType = tList2; auto it = items.begin(); this->smallList[0] = transformer(*it); it++; this->smallList[1] = transformer(*it); } else { this->internalType = tListN; this->bigList.size = items.size(); this->bigList.elems = gcAllocType(items.size()); auto it = items.begin(); for (size_t i = 0; i < items.size(); i++, it++) { this->bigList.elems[i] = transformer(*it); } } } /// Constructs a nix language value of the singleton type "null". Value(null_t) : internalType(tNull) , _empty{0, 0} { } /// Constructs a nix language value of type "set", with the attribute /// bindings pointed to by @ref bindings. /// /// The bindings are not not copied; this constructor assumes @ref bindings /// has already been suitably allocated by something like nix::buildBindings. Value(attrs_t, Bindings * bindings) : internalType(tAttrs) , attrs(bindings) , _attrs_pad(0) { } /// Constructs a nix language lazy delayed computation, or "thunk". /// /// The thunk stores the environment it will be computed in @ref env, and /// the expression that will need to be evaluated @ref expr. Value(thunk_t, Env & env, Expr & expr) : internalType(tThunk) , thunk({ .env = &env, .expr = &expr }) { } /// Constructs a nix language value of type "lambda", which represents /// a builtin, primitive operation ("primop"), from the primop /// implemented by @ref primop. Value(primop_t, PrimOp & primop); /// Constructs a nix language value of type "lambda", which represents a /// partially applied primop. Value(primOpApp_t, Value & lhs, Value & rhs) : internalType(tPrimOpApp) , primOpApp({ .left = &lhs, .right = &rhs }) { } /// Constructs a nix language value of type "lambda", which represents a /// lazy partial application of another lambda. Value(app_t, Value & lhs, Value & rhs) : internalType(tApp) , app({ .left = &lhs, .right = &rhs }) { } /// Constructs a nix language value of type "external", which is only used /// by plugins. Do any existing plugins even use this mechanism? Value(external_t, ExternalValueBase & external) : internalType(tExternal) , external(&external) , _external_pad(0) { } /// Constructs a nix language value of type "lambda", which represents a /// run of the mill lambda defined in nix code. /// /// This takes the environment the lambda is closed over @ref env, and /// the lambda expression itself @ref lambda, which will not be evaluated /// until it is applied. Value(lambda_t, Env & env, ExprLambda & lambda) : internalType(tLambda) , lambda({ .env = &env, .fun = &lambda }) { } /// Constructs an evil thunk, whose evaluation represents infinite recursion. explicit Value(blackhole_t) : internalType(tThunk) , thunk({ .env = nullptr, .expr = eBlackHoleAddr }) { } Value(Value const & rhs) = default; /// Move constructor. Does the same thing as the copy constructor, but /// also zeroes out the other Value. Value(Value && rhs) : internalType(rhs.internalType) , _empty{ 0, 0 } { *this = std::move(rhs); } Value & operator=(Value const & rhs) = default; /// Move assignment operator. /// Does the same thing as the copy assignment operator, but also zeroes out /// the rhs. inline Value & operator=(Value && rhs) { *this = static_cast(rhs); if (this != &rhs) { // Kill `rhs`, because non-destructive move lol. rhs.internalType = static_cast(0); rhs._empty[0] = 0; rhs._empty[1] = 0; } return *this; } void print(EvalState &state, std::ostream &str, PrintOptions options = PrintOptions {}); // Functions needed to distinguish the type // These should be removed eventually, by putting the functionality that's // needed by callers into methods of this type // type() == nThunk inline bool isThunk() const { return internalType == tThunk; }; inline bool isApp() const { return internalType == tApp; }; inline bool isBlackhole() const { return internalType == tThunk && thunk.expr == eBlackHoleAddr; } // type() == nFunction inline bool isLambda() const { return internalType == tLambda; }; inline bool isPrimOp() const { return internalType == tPrimOp; }; inline bool isPrimOpApp() const { return internalType == tPrimOpApp; }; union { /// Dummy field, which takes up as much space as the largest union variants /// to set the union's memory to zeroed memory. uintptr_t _empty[2]; NixInt integer; struct { bool boolean; uintptr_t _bool_pad; }; /** * Strings in the evaluator carry a so-called `context` which * is a list of strings representing store paths. This is to * allow users to write things like * "--with-freetype2-library=" + freetype + "/lib" * where `freetype` is a derivation (or a source to be copied * to the store). If we just concatenated the strings without * keeping track of the referenced store paths, then if the * string is used as a derivation attribute, the derivation * will not have the correct dependencies in its inputDrvs and * inputSrcs. * The semantics of the context is as follows: when a string * with context C is used as a derivation attribute, then the * derivations in C will be added to the inputDrvs of the * derivation, and the other store paths in C will be added to * the inputSrcs of the derivations. * For canonicity, the store paths should be in sorted order. */ struct { const char * s; const char * * context; // must be in sorted order } string; struct { const char * _path; uintptr_t _path_pad; }; struct { Bindings * attrs; uintptr_t _attrs_pad; }; struct { size_t size; Value * * elems; } bigList; Value * smallList[2]; struct { Env * env; Expr * expr; } thunk; struct { Value * left, * right; } app; struct { Env * env; ExprLambda * fun; } lambda; struct { PrimOp * primOp; uintptr_t _primop_pad; }; struct { Value * left, * right; } primOpApp; struct { ExternalValueBase * external; uintptr_t _external_pad; }; struct { NixFloat fpoint; uintptr_t _float_pad; }; }; /** * Returns the normal type of a Value. This only returns nThunk if * the Value hasn't been forceValue'd * * @param invalidIsThunk Instead of aborting an an invalid (probably * 0, so uninitialized) internal type, return `nThunk`. */ inline ValueType type(bool invalidIsThunk = false) const { switch (internalType) { case tInt: return nInt; case tBool: return nBool; case tString: return nString; case tPath: return nPath; case tNull: return nNull; case tAttrs: return nAttrs; case tList1: case tList2: case tListN: return nList; case tLambda: case tPrimOp: case tPrimOpApp: return nFunction; case tExternal: return nExternal; case tFloat: return nFloat; case tThunk: case tApp: return nThunk; } if (invalidIsThunk) return nThunk; else abort(); } /** * After overwriting an app node, be sure to clear pointers in the * Value to ensure that the target isn't kept alive unnecessarily. */ inline void clearValue() { app.left = app.right = 0; } inline void mkInt(NixInt::Inner n) { mkInt(NixInt{n}); } inline void mkInt(NixInt n) { clearValue(); internalType = tInt; integer = n; } inline void mkBool(bool b) { clearValue(); internalType = tBool; boolean = b; } inline void mkString(const char * s, const char * * context = 0) { internalType = tString; string.s = s; string.context = context; } void mkString(std::string_view s); void mkString(std::string_view s, const NixStringContext & context); void mkStringMove(const char * s, const NixStringContext & context); void mkPath(const SourcePath & path); inline void mkPath(const char * path) { clearValue(); internalType = tPath; _path = path; } inline void mkNull() { clearValue(); internalType = tNull; } inline void mkAttrs(Bindings * a) { clearValue(); internalType = tAttrs; attrs = a; } Value & mkAttrs(BindingsBuilder & bindings); inline void mkList(size_t size) { clearValue(); if (size == 1) internalType = tList1; else if (size == 2) internalType = tList2; else { internalType = tListN; bigList.size = size; } } inline void mkThunk(Env * e, Expr & ex) { internalType = tThunk; thunk.env = e; thunk.expr = &ex; } inline void mkApp(Value * l, Value * r) { internalType = tApp; app.left = l; app.right = r; } inline void mkLambda(Env * e, ExprLambda * f) { internalType = tLambda; lambda.env = e; lambda.fun = f; } inline void mkBlackhole() { internalType = tThunk; thunk.expr = eBlackHoleAddr; } void mkPrimOp(PrimOp * p); inline void mkPrimOpApp(Value * l, Value * r) { internalType = tPrimOpApp; primOpApp.left = l; primOpApp.right = r; } /** * For a `tPrimOpApp` value, get the original `PrimOp` value. */ PrimOp * primOpAppPrimOp() const; inline void mkExternal(ExternalValueBase * e) { clearValue(); internalType = tExternal; external = e; } inline void mkFloat(NixFloat n) { clearValue(); internalType = tFloat; fpoint = n; } bool isList() const { return internalType == tList1 || internalType == tList2 || internalType == tListN; } Value * * listElems() { return internalType == tList1 || internalType == tList2 ? smallList : bigList.elems; } Value * const * listElems() const { return internalType == tList1 || internalType == tList2 ? smallList : bigList.elems; } size_t listSize() const { return internalType == tList1 ? 1 : internalType == tList2 ? 2 : bigList.size; } PosIdx determinePos(const PosIdx pos) const; /** * Check whether forcing this value requires a trivial amount of * computation. In particular, function applications are * non-trivial. */ bool isTrivial() const; auto listItems() { struct ListIterable { typedef Value * const * iterator; iterator _begin, _end; iterator begin() const { return _begin; } iterator end() const { return _end; } }; assert(isList()); auto begin = listElems(); return ListIterable { begin, begin + listSize() }; } auto listItems() const { struct ConstListIterable { typedef const Value * const * iterator; iterator _begin, _end; iterator begin() const { return _begin; } iterator end() const { return _end; } }; assert(isList()); auto begin = listElems(); return ConstListIterable { begin, begin + listSize() }; } SourcePath path() const { assert(internalType == tPath); return SourcePath{CanonPath(_path)}; } std::string_view str() const { assert(internalType == tString); return std::string_view(string.s); } }; using ValueVector = GcVector; using ValueMap = GcMap; using ValueVectorMap = std::map; /** * A value allocated in traceable memory. */ typedef std::shared_ptr RootValue; RootValue allocRootValue(Value * v); }