#include #include #include #include #include "args.hh" #include "hash.hh" #include "archive.hh" #include "charptr-cast.hh" #include "logging.hh" #include "split.hh" #include "strings.hh" #include #include #include namespace nix { static size_t regularHashSize(HashType type) { switch (type) { case HashType::MD5: return md5HashSize; case HashType::SHA1: return sha1HashSize; case HashType::SHA256: return sha256HashSize; case HashType::SHA512: return sha512HashSize; } abort(); } std::set hashTypes = { "md5", "sha1", "sha256", "sha512" }; Hash::Hash(HashType type) : type(type) { hashSize = regularHashSize(type); assert(hashSize <= maxHashSize); memset(hash, 0, maxHashSize); } bool Hash::operator == (const Hash & h2) const { if (hashSize != h2.hashSize) return false; for (unsigned int i = 0; i < hashSize; i++) if (hash[i] != h2.hash[i]) return false; return true; } bool Hash::operator != (const Hash & h2) const { return !(*this == h2); } bool Hash::operator < (const Hash & h) const { if (hashSize < h.hashSize) return true; if (hashSize > h.hashSize) return false; for (unsigned int i = 0; i < hashSize; i++) { if (hash[i] < h.hash[i]) return true; if (hash[i] > h.hash[i]) return false; } return false; } const std::string base16Chars = "0123456789abcdef"; static std::string printHash16(const Hash & hash) { std::string buf; buf.reserve(hash.hashSize * 2); for (unsigned int i = 0; i < hash.hashSize; i++) { buf.push_back(base16Chars[hash.hash[i] >> 4]); buf.push_back(base16Chars[hash.hash[i] & 0x0f]); } return buf; } // omitted: E O U T const std::string base32Chars = "0123456789abcdfghijklmnpqrsvwxyz"; static std::string printHash32(const Hash & hash) { assert(hash.hashSize); size_t len = hash.base32Len(); assert(len); std::string s; s.reserve(len); for (int n = (int) len - 1; n >= 0; n--) { unsigned int b = n * 5; unsigned int i = b / 8; unsigned int j = b % 8; unsigned char c = (hash.hash[i] >> j) | (i >= hash.hashSize - 1 ? 0 : hash.hash[i + 1] << (8 - j)); s.push_back(base32Chars[c & 0x1f]); } return s; } std::string printHash16or32(const Hash & hash) { return hash.to_string(hash.type == HashType::MD5 ? Base::Base16 : Base::Base32, false); } std::string Hash::to_string(Base base, bool includeType) const { std::string s; if (base == Base::SRI || includeType) { s += printHashType(type); s += base == Base::SRI ? '-' : ':'; } switch (base) { case Base::Base16: s += printHash16(*this); break; case Base::Base32: s += printHash32(*this); break; case Base::Base64: case Base::SRI: s += base64Encode(std::string_view(charptr_cast(hash), hashSize)); break; } return s; } Hash Hash::dummy(HashType::SHA256); Hash Hash::parseSRI(std::string_view original) { auto rest = original; // Parse the has type before the separater, if there was one. auto hashRaw = splitPrefixTo(rest, '-'); if (!hashRaw) throw BadHash("hash '%s' is not SRI", original); HashType parsedType = parseHashType(*hashRaw); return Hash(rest, parsedType, true); } // Mutates the string to eliminate the prefixes when found static std::pair, bool> getParsedTypeAndSRI(std::string_view & rest) { bool isSRI = false; // Parse the hash type before the separator, if there was one. std::optional optParsedType; { auto hashRaw = splitPrefixTo(rest, ':'); if (!hashRaw) { hashRaw = splitPrefixTo(rest, '-'); if (hashRaw) isSRI = true; } if (hashRaw) optParsedType = parseHashType(*hashRaw); } return {optParsedType, isSRI}; } Hash Hash::parseAnyPrefixed(std::string_view original) { auto rest = original; auto [optParsedType, isSRI] = getParsedTypeAndSRI(rest); // Either the string or user must provide the type, if they both do they // must agree. if (!optParsedType) throw BadHash("hash '%s' does not include a type", rest); return Hash(rest, *optParsedType, isSRI); } Hash Hash::parseAny(std::string_view original, std::optional optType) { auto rest = original; auto [optParsedType, isSRI] = getParsedTypeAndSRI(rest); // Either the string or user must provide the type, if they both do they // must agree. if (!optParsedType && !optType) throw BadHash("hash '%s' does not include a type, nor is the type otherwise known from context", rest); else if (optParsedType && optType && *optParsedType != *optType) throw BadHash("hash '%s' should have type '%s'", original, printHashType(*optType)); HashType hashType = optParsedType ? *optParsedType : *optType; return Hash(rest, hashType, isSRI); } Hash Hash::parseNonSRIUnprefixed(std::string_view s, HashType type) { return Hash(s, type, false); } Hash::Hash(std::string_view rest, HashType type, bool isSRI) : Hash(type) { if (!isSRI && rest.size() == base16Len()) { auto parseHexDigit = [&](char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'A' && c <= 'F') return c - 'A' + 10; if (c >= 'a' && c <= 'f') return c - 'a' + 10; throw BadHash("invalid base-16 hash '%s'", rest); }; for (unsigned int i = 0; i < hashSize; i++) { hash[i] = parseHexDigit(rest[i * 2]) << 4 | parseHexDigit(rest[i * 2 + 1]); } } else if (!isSRI && rest.size() == base32Len()) { for (unsigned int n = 0; n < rest.size(); ++n) { char c = rest[rest.size() - n - 1]; size_t digit; for (digit = 0; digit < base32Chars.size(); ++digit) /* !!! slow */ if (base32Chars[digit] == c) break; if (digit >= 32) throw BadHash("invalid base-32 hash '%s'", rest); unsigned int b = n * 5; unsigned int i = b / 8; unsigned int j = b % 8; hash[i] |= digit << j; if (i < hashSize - 1) { hash[i + 1] |= digit >> (8 - j); } else { if (digit >> (8 - j)) throw BadHash("invalid base-32 hash '%s'", rest); } } } else if (isSRI || rest.size() == base64Len()) { auto d = base64Decode(rest); if (d.size() != hashSize) throw BadHash("invalid %s hash '%s'", isSRI ? "SRI" : "base-64", rest); assert(hashSize); memcpy(hash, d.data(), hashSize); } else throw BadHash("hash '%s' has wrong length for hash type '%s'", rest, printHashType(this->type)); } Hash newHashAllowEmpty(std::string_view hashStr, std::optional ht) { if (hashStr.empty()) { if (!ht) throw BadHash("empty hash requires explicit hash type"); Hash h(*ht); warn("found empty hash, assuming '%s'", h.to_string(Base::SRI, true)); return h; } else return Hash::parseAny(hashStr, ht); } union Ctx { MD5_CTX md5; SHA_CTX sha1; SHA256_CTX sha256; SHA512_CTX sha512; }; static void start(HashType ht, Ctx & ctx) { if (ht == HashType::MD5) MD5_Init(&ctx.md5); else if (ht == HashType::SHA1) SHA1_Init(&ctx.sha1); else if (ht == HashType::SHA256) SHA256_Init(&ctx.sha256); else if (ht == HashType::SHA512) SHA512_Init(&ctx.sha512); } static void update(HashType ht, Ctx & ctx, std::string_view data) { if (ht == HashType::MD5) MD5_Update(&ctx.md5, data.data(), data.size()); else if (ht == HashType::SHA1) SHA1_Update(&ctx.sha1, data.data(), data.size()); else if (ht == HashType::SHA256) SHA256_Update(&ctx.sha256, data.data(), data.size()); else if (ht == HashType::SHA512) SHA512_Update(&ctx.sha512, data.data(), data.size()); } static void finish(HashType ht, Ctx & ctx, unsigned char * hash) { if (ht == HashType::MD5) MD5_Final(hash, &ctx.md5); else if (ht == HashType::SHA1) SHA1_Final(hash, &ctx.sha1); else if (ht == HashType::SHA256) SHA256_Final(hash, &ctx.sha256); else if (ht == HashType::SHA512) SHA512_Final(hash, &ctx.sha512); } Hash hashString(HashType ht, std::string_view s) { Ctx ctx; Hash hash(ht); start(ht, ctx); update(ht, ctx, s); finish(ht, ctx, hash.hash); return hash; } Hash hashFile(HashType ht, const Path & path) { HashSink sink(ht); sink << readFileSource(path); return sink.finish().first; } HashSink::HashSink(HashType ht) : ht(ht) { ctx = new Ctx; bytes = 0; start(ht, *ctx); } HashSink::~HashSink() { bufPos = 0; delete ctx; } void HashSink::writeUnbuffered(std::string_view data) { bytes += data.size(); update(ht, *ctx, data); } HashResult HashSink::finish() { flush(); Hash hash(ht); nix::finish(ht, *ctx, hash.hash); return HashResult(hash, bytes); } HashResult HashSink::currentHash() { flush(); Ctx ctx2 = *ctx; Hash hash(ht); nix::finish(ht, ctx2, hash.hash); return HashResult(hash, bytes); } HashResult hashPath( HashType ht, const Path & path, PathFilter & filter) { HashSink sink(ht); sink << dumpPath(path, filter); return sink.finish(); } Hash compressHash(const Hash & hash, unsigned int newSize) { Hash h(hash.type); h.hashSize = newSize; for (unsigned int i = 0; i < hash.hashSize; ++i) h.hash[i % newSize] ^= hash.hash[i]; return h; } std::optional parseHashTypeOpt(std::string_view s) { if (s == "md5") return HashType::MD5; else if (s == "sha1") return HashType::SHA1; else if (s == "sha256") return HashType::SHA256; else if (s == "sha512") return HashType::SHA512; else return std::optional {}; } HashType parseHashType(std::string_view s) { auto opt_h = parseHashTypeOpt(s); if (opt_h) return *opt_h; else throw UsageError("unknown hash algorithm '%1%'", s); } std::string_view printHashType(HashType ht) { switch (ht) { case HashType::MD5: return "md5"; case HashType::SHA1: return "sha1"; case HashType::SHA256: return "sha256"; case HashType::SHA512: return "sha512"; default: // illegal hash type enum value internally, as opposed to external input // which should be validated with nice error message. assert(false); } } }