aboutsummaryrefslogtreecommitdiff
path: root/src/libutil/sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/libutil/sha1.c')
-rw-r--r--src/libutil/sha1.c369
1 files changed, 0 insertions, 369 deletions
diff --git a/src/libutil/sha1.c b/src/libutil/sha1.c
deleted file mode 100644
index d9d294d15..000000000
--- a/src/libutil/sha1.c
+++ /dev/null
@@ -1,369 +0,0 @@
-/* $Id$ */
-
-/* sha.c - Implementation of the Secure Hash Algorithm
- *
- * Copyright (C) 1995, A.M. Kuchling
- *
- * Distribute and use freely; there are no restrictions on further
- * dissemination and usage except those imposed by the laws of your
- * country of residence.
- *
- * Adapted to pike and some cleanup by Niels Möller.
- */
-
-/* $Id$ */
-
-/* SHA: NIST's Secure Hash Algorithm */
-
-/* Based on SHA code originally posted to sci.crypt by Peter Gutmann
- in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
- Modified to test for endianness on creation of SHA objects by AMK.
- Also, the original specification of SHA was found to have a weakness
- by NSA/NIST. This code implements the fixed version of SHA.
-*/
-
-/* Here's the first paragraph of Peter Gutmann's posting:
-
-The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
-SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
-what's changed in the new version. The fix is a simple change which involves
-adding a single rotate in the initial expansion function. It is unknown
-whether this is an optimal solution to the problem which was discovered in the
-SHA or whether it's simply a bandaid which fixes the problem with a minimum of
-effort (for example the reengineering of a great many Capstone chips).
-*/
-
-#include "sha1.h"
-
-#include <string.h>
-
-void sha_copy(struct SHA_CTX *dest, struct SHA_CTX *src)
-{
- unsigned int i;
-
- dest->count_l=src->count_l;
- dest->count_h=src->count_h;
- for(i=0; i<SHA_DIGESTLEN; i++)
- dest->digest[i]=src->digest[i];
- for(i=0; i < src->index; i++)
- dest->block[i] = src->block[i];
- dest->index = src->index;
-}
-
-
-/* The SHA f()-functions. The f1 and f3 functions can be optimized to
- save one boolean operation each - thanks to Rich Schroeppel,
- rcs@cs.arizona.edu for discovering this */
-
-/*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) // Rounds 0-19 */
-#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */
-#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
-/*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) // Rounds 40-59 */
-#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */
-#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
-
-/* The SHA Mysterious Constants */
-
-#define K1 0x5A827999L /* Rounds 0-19 */
-#define K2 0x6ED9EBA1L /* Rounds 20-39 */
-#define K3 0x8F1BBCDCL /* Rounds 40-59 */
-#define K4 0xCA62C1D6L /* Rounds 60-79 */
-
-/* SHA initial values */
-
-#define h0init 0x67452301L
-#define h1init 0xEFCDAB89L
-#define h2init 0x98BADCFEL
-#define h3init 0x10325476L
-#define h4init 0xC3D2E1F0L
-
-/* 32-bit rotate left - kludged with shifts */
-
-#define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
-
-/* The initial expanding function. The hash function is defined over an
- 80-word expanded input array W, where the first 16 are copies of the input
- data, and the remaining 64 are defined by
-
- W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
-
- This implementation generates these values on the fly in a circular
- buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
- optimization.
-
- The updated SHA changes the expanding function by adding a rotate of 1
- bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
- for this information */
-
-#define expand(W,i) ( W[ i & 15 ] = \
- ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
- W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
-
-
-/* The prototype SHA sub-round. The fundamental sub-round is:
-
- a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
- b' = a;
- c' = ROTL( 30, b );
- d' = c;
- e' = d;
-
- but this is implemented by unrolling the loop 5 times and renaming the
- variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
- This code is then replicated 20 times for each of the 4 functions, using
- the next 20 values from the W[] array each time */
-
-#define subRound(a, b, c, d, e, f, k, data) \
- ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
-
-/* Initialize the SHA values */
-
-void SHA1_Init(struct SHA_CTX *ctx)
-{
- /* Set the h-vars to their initial values */
- ctx->digest[ 0 ] = h0init;
- ctx->digest[ 1 ] = h1init;
- ctx->digest[ 2 ] = h2init;
- ctx->digest[ 3 ] = h3init;
- ctx->digest[ 4 ] = h4init;
-
- /* Initialize bit count */
- ctx->count_l = ctx->count_h = 0;
-
- /* Initialize buffer */
- ctx->index = 0;
-}
-
-/* Perform the SHA transformation. Note that this code, like MD5, seems to
- break some optimizing compilers due to the complexity of the expressions
- and the size of the basic block. It may be necessary to split it into
- sections, e.g. based on the four subrounds
-
- Note that this function destroys the data area */
-
-static void sha_transform(struct SHA_CTX *ctx, uint32_t *data )
-{
- uint32_t A, B, C, D, E; /* Local vars */
-
- /* Set up first buffer and local data buffer */
- A = ctx->digest[0];
- B = ctx->digest[1];
- C = ctx->digest[2];
- D = ctx->digest[3];
- E = ctx->digest[4];
-
- /* Heavy mangling, in 4 sub-rounds of 20 interations each. */
- subRound( A, B, C, D, E, f1, K1, data[ 0] );
- subRound( E, A, B, C, D, f1, K1, data[ 1] );
- subRound( D, E, A, B, C, f1, K1, data[ 2] );
- subRound( C, D, E, A, B, f1, K1, data[ 3] );
- subRound( B, C, D, E, A, f1, K1, data[ 4] );
- subRound( A, B, C, D, E, f1, K1, data[ 5] );
- subRound( E, A, B, C, D, f1, K1, data[ 6] );
- subRound( D, E, A, B, C, f1, K1, data[ 7] );
- subRound( C, D, E, A, B, f1, K1, data[ 8] );
- subRound( B, C, D, E, A, f1, K1, data[ 9] );
- subRound( A, B, C, D, E, f1, K1, data[10] );
- subRound( E, A, B, C, D, f1, K1, data[11] );
- subRound( D, E, A, B, C, f1, K1, data[12] );
- subRound( C, D, E, A, B, f1, K1, data[13] );
- subRound( B, C, D, E, A, f1, K1, data[14] );
- subRound( A, B, C, D, E, f1, K1, data[15] );
- subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) );
- subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) );
- subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) );
- subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) );
-
- subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
- subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
- subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
- subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) );
-
- subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
- subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
- subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
- subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) );
-
- subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
- subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
- subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
- subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) );
-
- /* Build message digest */
- ctx->digest[0] += A;
- ctx->digest[1] += B;
- ctx->digest[2] += C;
- ctx->digest[3] += D;
- ctx->digest[4] += E;
-}
-
-#if 1
-
-#ifndef EXTRACT_UCHAR
-#define EXTRACT_UCHAR(p) (*(unsigned char *)(p))
-#endif
-
-#define STRING2INT(s) ((((((EXTRACT_UCHAR(s) << 8) \
- | EXTRACT_UCHAR(s+1)) << 8) \
- | EXTRACT_UCHAR(s+2)) << 8) \
- | EXTRACT_UCHAR(s+3))
-#else
-uint32_t STRING2INT(unsigned char *s)
-{
- uint32_t r;
- unsigned int i;
-
- for (i = 0, r = 0; i < 4; i++, s++)
- r = (r << 8) | *s;
- return r;
-}
-#endif
-
-static void sha_block(struct SHA_CTX *ctx, const unsigned char *block)
-{
- uint32_t data[SHA_DATALEN];
- unsigned int i;
-
- /* Update block count */
- if (!++ctx->count_l)
- ++ctx->count_h;
-
- /* Endian independent conversion */
- for (i = 0; i<SHA_DATALEN; i++, block += 4)
- data[i] = STRING2INT(block);
-
- sha_transform(ctx, data);
-}
-
-void SHA1_Update(struct SHA_CTX *ctx, const unsigned char *buffer, uint32_t len)
-{
- if (ctx->index)
- { /* Try to fill partial block */
- unsigned left = SHA_DATASIZE - ctx->index;
- if (len < left)
- {
- memcpy(ctx->block + ctx->index, buffer, len);
- ctx->index += len;
- return; /* Finished */
- }
- else
- {
- memcpy(ctx->block + ctx->index, buffer, left);
- sha_block(ctx, ctx->block);
- buffer += left;
- len -= left;
- }
- }
- while (len >= SHA_DATASIZE)
- {
- sha_block(ctx, buffer);
- buffer += SHA_DATASIZE;
- len -= SHA_DATASIZE;
- }
- if ((ctx->index = len)) /* This assignment is intended */
- /* Buffer leftovers */
- memcpy(ctx->block, buffer, len);
-}
-
-/* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
- 1 0* (64-bit count of bits processed, MSB-first) */
-
-void SHA1_Final(unsigned char *s, struct SHA_CTX *ctx)
-{
- uint32_t data[SHA_DATALEN];
- unsigned int i;
- unsigned int words;
-
- i = ctx->index;
- /* Set the first char of padding to 0x80. This is safe since there is
- always at least one byte free */
- ctx->block[i++] = 0x80;
-
- /* Fill rest of word */
- for( ; i & 3; i++)
- ctx->block[i] = 0;
-
- /* i is now a multiple of the word size 4 */
- words = i >> 2;
- for (i = 0; i < words; i++)
- data[i] = STRING2INT(ctx->block + 4*i);
-
- if (words > (SHA_DATALEN-2))
- { /* No room for length in this block. Process it and
- * pad with another one */
- for (i = words ; i < SHA_DATALEN; i++)
- data[i] = 0;
- sha_transform(ctx, data);
- for (i = 0; i < (SHA_DATALEN-2); i++)
- data[i] = 0;
- }
- else
- for (i = words ; i < SHA_DATALEN - 2; i++)
- data[i] = 0;
- /* Theres 512 = 2^9 bits in one block */
- data[SHA_DATALEN-2] = (ctx->count_h << 9) | (ctx->count_l >> 23);
- data[SHA_DATALEN-1] = (ctx->count_l << 9) | (ctx->index << 3);
- sha_transform(ctx, data);
- sha_digest(ctx, s);
-}
-
-void sha_digest(struct SHA_CTX *ctx, unsigned char *s)
-{
- unsigned int i;
-
- for (i = 0; i < SHA_DIGESTLEN; i++)
- {
- *s++ = ctx->digest[i] >> 24;
- *s++ = 0xff & (ctx->digest[i] >> 16);
- *s++ = 0xff & (ctx->digest[i] >> 8);
- *s++ = 0xff & ctx->digest[i];
- }
-}