1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
|
#pragma once
///@file
#include <cassert>
#include <climits>
#include <functional>
#include <ranges>
#include <span>
#include "gc-alloc.hh"
#include "symbol-table.hh"
#include "value/context.hh"
#include "input-accessor.hh"
#include "source-path.hh"
#include "print-options.hh"
#include "checked-arithmetic.hh"
#include "concepts.hh"
#include <nlohmann/json_fwd.hpp>
namespace nix {
class BindingsBuilder;
typedef enum {
tInt = 1,
tBool,
tString,
tPath,
tNull,
tAttrs,
tList1,
tList2,
tListN,
tThunk,
tApp,
tLambda,
tPrimOp,
tPrimOpApp,
tExternal,
tFloat
} InternalType;
/**
* This type abstracts over all actual value types in the language,
* grouping together implementation details like tList*, different function
* types, and types in non-normal form (so thunks and co.)
*/
typedef enum {
nThunk,
nInt,
nFloat,
nBool,
nString,
nPath,
nNull,
nAttrs,
nList,
nFunction,
nExternal
} ValueType;
class Bindings;
struct Env;
struct Expr;
struct ExprLambda;
struct ExprBlackHole;
struct PrimOp;
class Symbol;
class PosIdx;
struct Pos;
class StorePath;
class Store;
class EvalState;
class XMLWriter;
class Printer;
using NixInt = checked::Checked<int64_t>;
using NixFloat = double;
/**
* External values must descend from ExternalValueBase, so that
* type-agnostic nix functions (e.g. showType) can be implemented
*/
class ExternalValueBase
{
friend std::ostream & operator << (std::ostream & str, const ExternalValueBase & v);
friend class Printer;
protected:
/**
* Print out the value
*/
virtual std::ostream & print(std::ostream & str) const = 0;
public:
/**
* Return a simple string describing the type
*/
virtual std::string showType() const = 0;
/**
* Return a string to be used in builtins.typeOf
*/
virtual std::string typeOf() const = 0;
/**
* Coerce the value to a string. Defaults to uncoercable, i.e. throws an
* error.
*/
virtual std::string coerceToString(EvalState & state, const PosIdx & pos, NixStringContext & context, bool copyMore, bool copyToStore) const;
/**
* Compare to another value of the same type. Defaults to uncomparable,
* i.e. always false.
*/
virtual bool operator ==(const ExternalValueBase & b) const;
/**
* Print the value as JSON. Defaults to unconvertable, i.e. throws an error
*/
virtual nlohmann::json printValueAsJSON(EvalState & state, bool strict,
NixStringContext & context, bool copyToStore = true) const;
/**
* Print the value as XML. Defaults to unevaluated
*/
virtual void printValueAsXML(EvalState & state, bool strict, bool location,
XMLWriter & doc, NixStringContext & context, PathSet & drvsSeen,
const PosIdx pos) const;
virtual ~ExternalValueBase()
{
};
};
std::ostream & operator << (std::ostream & str, const ExternalValueBase & v);
/** This is just the address of eBlackHole. It exists because eBlackHole has an
* incomplete type at usage sites so is not possible to cast. */
extern Expr *eBlackHoleAddr;
struct NewValueAs
{
struct integer_t { };
constexpr static integer_t integer{};
struct floating_t { };
constexpr static floating_t floating{};
struct boolean_t { };
constexpr static boolean_t boolean{};
struct string_t { };
constexpr static string_t string{};
struct path_t { };
constexpr static path_t path{};
struct list_t { };
constexpr static list_t list{};
struct attrs_t { };
constexpr static attrs_t attrs{};
struct thunk_t { };
constexpr static thunk_t thunk{};
struct null_t { };
constexpr static null_t null{};
struct app_t { };
constexpr static app_t app{};
struct primop_t { };
constexpr static primop_t primop{};
struct primOpApp_t { };
constexpr static primOpApp_t primOpApp{};
struct lambda_t { };
constexpr static lambda_t lambda{};
struct external_t { };
constexpr static external_t external{};
struct blackhole_t { };
constexpr static blackhole_t blackhole{};
};
struct Value
{
private:
InternalType internalType;
friend std::string showType(const Value & v);
public:
// Discount `using NewValueAs::*;`
// NOLINTNEXTLINE(bugprone-macro-parentheses)
#define USING_VALUETYPE(name) using name = NewValueAs::name
USING_VALUETYPE(integer_t);
USING_VALUETYPE(floating_t);
USING_VALUETYPE(boolean_t);
USING_VALUETYPE(string_t);
USING_VALUETYPE(path_t);
USING_VALUETYPE(list_t);
USING_VALUETYPE(attrs_t);
USING_VALUETYPE(thunk_t);
USING_VALUETYPE(primop_t);
USING_VALUETYPE(app_t);
USING_VALUETYPE(null_t);
USING_VALUETYPE(primOpApp_t);
USING_VALUETYPE(lambda_t);
USING_VALUETYPE(external_t);
USING_VALUETYPE(blackhole_t);
#undef USING_VALUETYPE
/// Default constructor which is still used in the codebase but should not
/// be used in new code. Zero initializes its members.
[[deprecated]] Value()
: internalType(static_cast<InternalType>(0))
, _empty{ 0, 0 }
{ }
/// Constructs a nix language value of type "int", with the integral value
/// of @ref i.
Value(integer_t, NixInt i)
: internalType(tInt)
, _empty{ 0, 0 }
{
// the NixInt ctor here is is special because NixInt has a ctor too, so
// we're not allowed to have it as an anonymous aggreagte member. we do
// however still have the option to clear the data members using _empty
// and leaving the second word of data cleared by setting only integer.
integer = i;
}
/// Constructs a nix language value of type "float", with the floating
/// point value of @ref f.
Value(floating_t, NixFloat f)
: internalType(tFloat)
, fpoint(f)
, _float_pad(0)
{ }
/// Constructs a nix language value of type "bool", with the boolean
/// value of @ref b.
Value(boolean_t, bool b)
: internalType(tBool)
, boolean(b)
, _bool_pad(0)
{ }
/// Constructs a nix language value of type "string", with the value of the
/// C-string pointed to by @ref strPtr, and optionally with an array of
/// string context pointed to by @ref contextPtr.
///
/// Neither the C-string nor the context array are copied; this constructor
/// assumes suitable memory has already been allocated (with the GC if
/// enabled), and string and context data copied into that memory.
Value(string_t, char const * strPtr, char const ** contextPtr = nullptr)
: internalType(tString)
, string({ .s = strPtr, .context = contextPtr })
{ }
/// Constructx a nix language value of type "string", with a copy of the
/// string data viewed by @ref copyFrom.
///
/// The string data *is* copied from @ref copyFrom, and this constructor
/// performs a dynamic (GC) allocation to do so.
Value(string_t, std::string_view copyFrom, NixStringContext const & context = {})
: internalType(tString)
, string({ .s = gcCopyStringIfNeeded(copyFrom), .context = nullptr })
{
if (context.empty()) {
// It stays nullptr.
return;
}
// Copy the context.
this->string.context = gcAllocType<char const *>(context.size() + 1);
size_t n = 0;
for (NixStringContextElem const & contextElem : context) {
this->string.context[n] = gcCopyStringIfNeeded(contextElem.to_string());
n += 1;
}
// Terminator sentinel.
this->string.context[n] = nullptr;
}
/// Constructx a nix language value of type "string", with the value of the
/// C-string pointed to by @ref strPtr, and optionally with a set of string
/// context @ref context.
///
/// The C-string is not copied; this constructor assumes suitable memory
/// has already been allocated (with the GC if enabled), and string data
/// has been copied into that memory. The context data *is* copied from
/// @ref context, and this constructor performs a dynamic (GC) allocation
/// to do so.
Value(string_t, char const * strPtr, NixStringContext const & context)
: internalType(tString)
, string({ .s = strPtr, .context = nullptr })
{
if (context.empty()) {
// It stays nullptr
return;
}
// Copy the context.
this->string.context = gcAllocType<char const *>(context.size() + 1);
size_t n = 0;
for (NixStringContextElem const & contextElem : context) {
this->string.context[n] = gcCopyStringIfNeeded(contextElem.to_string());
n += 1;
}
// Terminator sentinel.
this->string.context[n] = nullptr;
}
/// Constructs a nix language value of type "path", with the value of the
/// C-string pointed to by @ref strPtr.
///
/// The C-string is not copied; this constructor assumes suitable memory
/// has already been allocated (with the GC if enabled), and string data
/// has been copied into that memory.
Value(path_t, char const * strPtr)
: internalType(tPath)
, _path(strPtr)
, _path_pad(0)
{ }
/// Constructs a nix language value of type "path", with the path
/// @ref path.
///
/// The data from @ref path *is* copied, and this constructor performs a
/// dynamic (GC) allocation to do so.
Value(path_t, SourcePath const & path)
: internalType(tPath)
, _path(gcCopyStringIfNeeded(path.path.abs()))
, _path_pad(0)
{ }
/// Constructs a nix language value of type "list", with element array
/// @ref items.
///
/// Generally, the data in @ref items is neither deep copied nor shallow
/// copied. This construct assumes the std::span @ref items is a region of
/// memory that has already been allocated (with the GC if enabled), and
/// an array of valid Value pointers has been copied into that memory.
///
/// Howver, as an implementation detail, if @ref items is only 2 items or
/// smaller, the list is stored inline, and the Value pointers in
/// @ref items are shallow copied into this structure, without dynamically
/// allocating memory.
Value(list_t, std::span<Value *> items)
{
if (items.size() == 1) {
this->internalType = tList1;
this->smallList[0] = items[0];
this->smallList[1] = nullptr;
} else if (items.size() == 2) {
this->internalType = tList2;
this->smallList[0] = items[0];
this->smallList[1] = items[1];
} else {
this->internalType = tListN;
this->bigList.size = items.size();
this->bigList.elems = items.data();
}
}
/// Constructs a nix language value of type "list", with an element array
/// initialized by applying @ref transformer to each element in @ref items.
///
/// This allows "in-place" construction of a nix list when some logic is
/// needed to get each Value pointer. This constructor dynamically (GC)
/// allocates memory for the size of @ref items, and the Value pointers
/// returned by @ref transformer are shallow copied into it.
template<
std::ranges::sized_range SizedIterableT,
InvocableR<Value *, typename SizedIterableT::value_type const &> TransformerT
>
Value(list_t, SizedIterableT & items, TransformerT const & transformer)
{
if (items.size() == 1) {
this->internalType = tList1;
this->smallList[0] = transformer(*items.begin());
this->smallList[1] = nullptr;
} else if (items.size() == 2) {
this->internalType = tList2;
auto it = items.begin();
this->smallList[0] = transformer(*it);
it++;
this->smallList[1] = transformer(*it);
} else {
this->internalType = tListN;
this->bigList.size = items.size();
this->bigList.elems = gcAllocType<Value *>(items.size());
auto it = items.begin();
for (size_t i = 0; i < items.size(); i++, it++) {
this->bigList.elems[i] = transformer(*it);
}
}
}
/// Constructs a nix language value of the singleton type "null".
Value(null_t)
: internalType(tNull)
, _empty{0, 0}
{ }
/// Constructs a nix language value of type "set", with the attribute
/// bindings pointed to by @ref bindings.
///
/// The bindings are not not copied; this constructor assumes @ref bindings
/// has already been suitably allocated by something like nix::buildBindings.
Value(attrs_t, Bindings * bindings)
: internalType(tAttrs)
, attrs(bindings)
, _attrs_pad(0)
{ }
/// Constructs a nix language lazy delayed computation, or "thunk".
///
/// The thunk stores the environment it will be computed in @ref env, and
/// the expression that will need to be evaluated @ref expr.
Value(thunk_t, Env & env, Expr & expr)
: internalType(tThunk)
, thunk({ .env = &env, .expr = &expr })
{ }
/// Constructs a nix language value of type "lambda", which represents
/// a builtin, primitive operation ("primop"), from the primop
/// implemented by @ref primop.
Value(primop_t, PrimOp & primop);
/// Constructs a nix language value of type "lambda", which represents a
/// partially applied primop.
Value(primOpApp_t, Value & lhs, Value & rhs)
: internalType(tPrimOpApp)
, primOpApp({ .left = &lhs, .right = &rhs })
{ }
/// Constructs a nix language value of type "lambda", which represents a
/// lazy partial application of another lambda.
Value(app_t, Value & lhs, Value & rhs)
: internalType(tApp)
, app({ .left = &lhs, .right = &rhs })
{ }
/// Constructs a nix language value of type "external", which is only used
/// by plugins. Do any existing plugins even use this mechanism?
Value(external_t, ExternalValueBase & external)
: internalType(tExternal)
, external(&external)
, _external_pad(0)
{ }
/// Constructs a nix language value of type "lambda", which represents a
/// run of the mill lambda defined in nix code.
///
/// This takes the environment the lambda is closed over @ref env, and
/// the lambda expression itself @ref lambda, which will not be evaluated
/// until it is applied.
Value(lambda_t, Env & env, ExprLambda & lambda)
: internalType(tLambda)
, lambda({ .env = &env, .fun = &lambda })
{ }
/// Constructs an evil thunk, whose evaluation represents infinite recursion.
explicit Value(blackhole_t)
: internalType(tThunk)
, thunk({ .env = nullptr, .expr = eBlackHoleAddr })
{ }
Value(Value const & rhs) = default;
/// Move constructor. Does the same thing as the copy constructor, but
/// also zeroes out the other Value.
Value(Value && rhs)
: internalType(rhs.internalType)
, _empty{ 0, 0 }
{
*this = std::move(rhs);
}
Value & operator=(Value const & rhs) = default;
/// Move assignment operator.
/// Does the same thing as the copy assignment operator, but also zeroes out
/// the rhs.
inline Value & operator=(Value && rhs)
{
*this = static_cast<const Value &>(rhs);
if (this != &rhs) {
// Kill `rhs`, because non-destructive move lol.
rhs.internalType = static_cast<InternalType>(0);
rhs._empty[0] = 0;
rhs._empty[1] = 0;
}
return *this;
}
void print(EvalState &state, std::ostream &str, PrintOptions options = PrintOptions {});
// Functions needed to distinguish the type
// These should be removed eventually, by putting the functionality that's
// needed by callers into methods of this type
// type() == nThunk
inline bool isThunk() const { return internalType == tThunk; };
inline bool isApp() const { return internalType == tApp; };
inline bool isBlackhole() const
{
return internalType == tThunk && thunk.expr == eBlackHoleAddr;
}
// type() == nFunction
inline bool isLambda() const { return internalType == tLambda; };
inline bool isPrimOp() const { return internalType == tPrimOp; };
inline bool isPrimOpApp() const { return internalType == tPrimOpApp; };
union
{
/// Dummy field, which takes up as much space as the largest union variants
/// to set the union's memory to zeroed memory.
uintptr_t _empty[2];
NixInt integer;
struct {
bool boolean;
uintptr_t _bool_pad;
};
/**
* Strings in the evaluator carry a so-called `context` which
* is a list of strings representing store paths. This is to
* allow users to write things like
* "--with-freetype2-library=" + freetype + "/lib"
* where `freetype` is a derivation (or a source to be copied
* to the store). If we just concatenated the strings without
* keeping track of the referenced store paths, then if the
* string is used as a derivation attribute, the derivation
* will not have the correct dependencies in its inputDrvs and
* inputSrcs.
* The semantics of the context is as follows: when a string
* with context C is used as a derivation attribute, then the
* derivations in C will be added to the inputDrvs of the
* derivation, and the other store paths in C will be added to
* the inputSrcs of the derivations.
* For canonicity, the store paths should be in sorted order.
*/
struct {
const char * s;
const char * * context; // must be in sorted order
} string;
struct {
const char * _path;
uintptr_t _path_pad;
};
struct {
Bindings * attrs;
uintptr_t _attrs_pad;
};
struct {
size_t size;
Value * * elems;
} bigList;
Value * smallList[2];
struct {
Env * env;
Expr * expr;
} thunk;
struct {
Value * left, * right;
} app;
struct {
Env * env;
ExprLambda * fun;
} lambda;
struct {
PrimOp * primOp;
uintptr_t _primop_pad;
};
struct {
Value * left, * right;
} primOpApp;
struct {
ExternalValueBase * external;
uintptr_t _external_pad;
};
struct {
NixFloat fpoint;
uintptr_t _float_pad;
};
};
/**
* Returns the normal type of a Value. This only returns nThunk if
* the Value hasn't been forceValue'd
*
* @param invalidIsThunk Instead of aborting an an invalid (probably
* 0, so uninitialized) internal type, return `nThunk`.
*/
inline ValueType type(bool invalidIsThunk = false) const
{
switch (internalType) {
case tInt: return nInt;
case tBool: return nBool;
case tString: return nString;
case tPath: return nPath;
case tNull: return nNull;
case tAttrs: return nAttrs;
case tList1: case tList2: case tListN: return nList;
case tLambda: case tPrimOp: case tPrimOpApp: return nFunction;
case tExternal: return nExternal;
case tFloat: return nFloat;
case tThunk: case tApp: return nThunk;
}
if (invalidIsThunk)
return nThunk;
else
abort();
}
/**
* After overwriting an app node, be sure to clear pointers in the
* Value to ensure that the target isn't kept alive unnecessarily.
*/
inline void clearValue()
{
app.left = app.right = 0;
}
inline void mkInt(NixInt::Inner n)
{
mkInt(NixInt{n});
}
inline void mkInt(NixInt n)
{
clearValue();
internalType = tInt;
integer = n;
}
inline void mkBool(bool b)
{
clearValue();
internalType = tBool;
boolean = b;
}
inline void mkString(const char * s, const char * * context = 0)
{
internalType = tString;
string.s = s;
string.context = context;
}
void mkString(std::string_view s);
void mkString(std::string_view s, const NixStringContext & context);
void mkStringMove(const char * s, const NixStringContext & context);
void mkPath(const SourcePath & path);
inline void mkPath(const char * path)
{
clearValue();
internalType = tPath;
_path = path;
}
inline void mkNull()
{
clearValue();
internalType = tNull;
}
inline void mkAttrs(Bindings * a)
{
clearValue();
internalType = tAttrs;
attrs = a;
}
Value & mkAttrs(BindingsBuilder & bindings);
inline void mkList(size_t size)
{
clearValue();
if (size == 1)
internalType = tList1;
else if (size == 2)
internalType = tList2;
else {
internalType = tListN;
bigList.size = size;
}
}
inline void mkThunk(Env * e, Expr & ex)
{
internalType = tThunk;
thunk.env = e;
thunk.expr = &ex;
}
inline void mkApp(Value * l, Value * r)
{
internalType = tApp;
app.left = l;
app.right = r;
}
inline void mkLambda(Env * e, ExprLambda * f)
{
internalType = tLambda;
lambda.env = e;
lambda.fun = f;
}
inline void mkBlackhole()
{
internalType = tThunk;
thunk.expr = eBlackHoleAddr;
}
void mkPrimOp(PrimOp * p);
inline void mkPrimOpApp(Value * l, Value * r)
{
internalType = tPrimOpApp;
primOpApp.left = l;
primOpApp.right = r;
}
/**
* For a `tPrimOpApp` value, get the original `PrimOp` value.
*/
PrimOp * primOpAppPrimOp() const;
inline void mkExternal(ExternalValueBase * e)
{
clearValue();
internalType = tExternal;
external = e;
}
inline void mkFloat(NixFloat n)
{
clearValue();
internalType = tFloat;
fpoint = n;
}
bool isList() const
{
return internalType == tList1 || internalType == tList2 || internalType == tListN;
}
Value * * listElems()
{
return internalType == tList1 || internalType == tList2 ? smallList : bigList.elems;
}
Value * const * listElems() const
{
return internalType == tList1 || internalType == tList2 ? smallList : bigList.elems;
}
size_t listSize() const
{
return internalType == tList1 ? 1 : internalType == tList2 ? 2 : bigList.size;
}
PosIdx determinePos(const PosIdx pos) const;
/**
* Check whether forcing this value requires a trivial amount of
* computation. In particular, function applications are
* non-trivial.
*/
bool isTrivial() const;
auto listItems()
{
struct ListIterable
{
typedef Value * const * iterator;
iterator _begin, _end;
iterator begin() const { return _begin; }
iterator end() const { return _end; }
};
assert(isList());
auto begin = listElems();
return ListIterable { begin, begin + listSize() };
}
auto listItems() const
{
struct ConstListIterable
{
typedef const Value * const * iterator;
iterator _begin, _end;
iterator begin() const { return _begin; }
iterator end() const { return _end; }
};
assert(isList());
auto begin = listElems();
return ConstListIterable { begin, begin + listSize() };
}
SourcePath path() const
{
assert(internalType == tPath);
return SourcePath{CanonPath(_path)};
}
std::string_view str() const
{
assert(internalType == tString);
return std::string_view(string.s);
}
};
using ValueVector = GcVector<Value *>;
using ValueMap = GcMap<Symbol, Value *>;
using ValueVectorMap = std::map<Symbol, ValueVector>;
/**
* A value allocated in traceable memory.
*/
typedef std::shared_ptr<Value *> RootValue;
RootValue allocRootValue(Value * v);
}
|