1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
#include "serialise.hh"
#include "charptr-cast.hh"
#include "signals.hh"
#include <cstring>
#include <cerrno>
#include <memory>
namespace nix {
namespace {
/**
* Convert a little-endian integer to host order.
*/
template<typename T>
T readLittleEndian(unsigned char * p)
{
T x = 0;
for (size_t i = 0; i < sizeof(x); ++i, ++p) {
x |= ((T) *p) << (i * 8);
}
return x;
}
}
template<typename T>
T readNum(Source & source)
{
unsigned char buf[8];
source(charptr_cast<char *>(buf), sizeof(buf));
auto n = readLittleEndian<uint64_t>(buf);
if (n > (uint64_t) std::numeric_limits<T>::max())
throw SerialisationError("serialised integer %d is too large for type '%s'", n, typeid(T).name());
return (T) n;
}
template bool readNum<bool>(Source & source);
template unsigned char readNum<unsigned char>(Source & source);
template unsigned int readNum<unsigned int>(Source & source);
template unsigned long readNum<unsigned long>(Source & source);
template long readNum<long>(Source & source);
template unsigned long long readNum<unsigned long long>(Source & source);
template long long readNum<long long>(Source & source);
void BufferedSink::operator () (std::string_view data)
{
if (!buffer) buffer = decltype(buffer)(new char[bufSize]);
while (!data.empty()) {
/* Optimisation: bypass the buffer if the data exceeds the
buffer size. */
if (bufPos + data.size() >= bufSize) {
flush();
writeUnbuffered(data);
break;
}
/* Otherwise, copy the bytes to the buffer. Flush the buffer
when it's full. */
size_t n = bufPos + data.size() > bufSize ? bufSize - bufPos : data.size();
memcpy(buffer.get() + bufPos, data.data(), n);
data.remove_prefix(n); bufPos += n;
if (bufPos == bufSize) flush();
}
}
void BufferedSink::flush()
{
if (bufPos == 0) return;
size_t n = bufPos;
bufPos = 0; // don't trigger the assert() in ~BufferedSink()
writeUnbuffered({buffer.get(), n});
}
FdSink::~FdSink()
{
try { flush(); } catch (...) { ignoreException(); }
}
void FdSink::writeUnbuffered(std::string_view data)
{
written += data.size();
try {
writeFull(fd, data);
} catch (SysError & e) {
_good = false;
throw;
}
}
bool FdSink::good()
{
return _good;
}
void Source::operator () (char * data, size_t len)
{
while (len) {
size_t n = read(data, len);
data += n; len -= n;
}
}
void Source::drainInto(Sink & sink)
{
std::string s;
std::array<char, 8192> buf;
while (true) {
size_t n;
try {
n = read(buf.data(), buf.size());
sink({buf.data(), n});
} catch (EndOfFile &) {
break;
}
}
}
std::string Source::drain()
{
StringSink s;
drainInto(s);
return std::move(s.s);
}
size_t BufferedSource::read(char * data, size_t len)
{
if (!buffer) buffer = decltype(buffer)(new char[bufSize]);
if (!bufPosIn) bufPosIn = readUnbuffered(buffer.get(), bufSize);
/* Copy out the data in the buffer. */
size_t n = len > bufPosIn - bufPosOut ? bufPosIn - bufPosOut : len;
memcpy(data, buffer.get() + bufPosOut, n);
bufPosOut += n;
if (bufPosIn == bufPosOut) bufPosIn = bufPosOut = 0;
return n;
}
bool BufferedSource::hasData()
{
return bufPosOut < bufPosIn;
}
size_t FdSource::readUnbuffered(char * data, size_t len)
{
ssize_t n;
do {
checkInterrupt();
n = ::read(fd, data, len);
} while (n == -1 && errno == EINTR);
if (n == -1) { _good = false; throw SysError("reading from file"); }
if (n == 0) { _good = false; throw EndOfFile(endOfFileError()); }
read += n;
return n;
}
bool FdSource::good()
{
return _good;
}
std::string FdSource::endOfFileError() const
{
return specialEndOfFileError.has_value() ? *specialEndOfFileError : "unexpected end-of-file";
}
size_t StringSource::read(char * data, size_t len)
{
if (pos == s.size()) throw EndOfFile("end of string reached");
size_t n = s.copy(data, len, pos);
pos += n;
return n;
}
void writePadding(size_t len, Sink & sink)
{
if (len % 8) {
char zero[8];
memset(zero, 0, sizeof(zero));
sink({zero, 8 - (len % 8)});
}
}
WireFormatGenerator SerializingTransform::operator()(std::string_view s)
{
co_yield s.size();
co_yield Bytes(s.begin(), s.size());
co_yield SerializingTransform::padding(s.size());
}
WireFormatGenerator SerializingTransform::operator()(const Strings & ss)
{
co_yield ss.size();
for (const auto & s : ss)
co_yield std::string_view(s);
}
WireFormatGenerator SerializingTransform::operator()(const StringSet & ss)
{
co_yield ss.size();
for (const auto & s : ss)
co_yield std::string_view(s);
}
WireFormatGenerator SerializingTransform::operator()(const Error & ex)
{
auto & info = ex.info();
co_yield "Error";
co_yield info.level;
co_yield "Error"; // removed
co_yield info.msg.str();
co_yield 0; // FIXME: info.errPos
co_yield info.traces.size();
for (auto & trace : info.traces) {
co_yield 0; // FIXME: trace.pos
co_yield trace.hint.str();
}
}
void readPadding(size_t len, Source & source)
{
if (len % 8) {
char zero[8];
size_t n = 8 - (len % 8);
source(zero, n);
for (unsigned int i = 0; i < n; i++)
if (zero[i]) throw SerialisationError("non-zero padding");
}
}
size_t readString(char * buf, size_t max, Source & source)
{
auto len = readNum<size_t>(source);
if (len > max) throw SerialisationError("string is too long");
source(buf, len);
readPadding(len, source);
return len;
}
std::string readString(Source & source, size_t max)
{
auto len = readNum<size_t>(source);
if (len > max) throw SerialisationError("string is too long");
std::string res(len, 0);
source(res.data(), len);
readPadding(len, source);
return res;
}
Source & operator >> (Source & in, std::string & s)
{
s = readString(in);
return in;
}
template<class T> T readStrings(Source & source)
{
auto count = readNum<size_t>(source);
T ss;
while (count--)
ss.insert(ss.end(), readString(source));
return ss;
}
template Paths readStrings(Source & source);
template PathSet readStrings(Source & source);
Error readError(Source & source)
{
auto type = readString(source);
assert(type == "Error");
auto level = (Verbosity) readInt(source);
auto name = readString(source); // removed
auto msg = readString(source);
ErrorInfo info {
.level = level,
.msg = HintFmt(msg),
};
auto havePos = readNum<size_t>(source);
assert(havePos == 0);
auto nrTraces = readNum<size_t>(source);
for (size_t i = 0; i < nrTraces; ++i) {
havePos = readNum<size_t>(source);
assert(havePos == 0);
info.traces.push_back(Trace {
.hint = HintFmt(readString(source))
});
}
return Error(std::move(info));
}
void StringSink::operator () (std::string_view data)
{
s.append(data);
}
size_t ChainSource::read(char * data, size_t len)
{
if (useSecond) {
return source2.read(data, len);
} else {
try {
return source1.read(data, len);
} catch (EndOfFile &) {
useSecond = true;
return this->read(data, len);
}
}
}
}
|