1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
#pragma once
///@file
#include "ref.hh"
#include <list>
#include <optional>
#include <set>
#include <string>
#include <limits>
#include <map>
#include <variant>
#include <vector>
namespace nix {
typedef std::list<std::string> Strings;
typedef std::set<std::string> StringSet;
typedef std::map<std::string, std::string> StringMap;
typedef std::map<std::string, std::string> StringPairs;
/**
* Paths are just strings.
*/
typedef std::string Path;
typedef std::string_view PathView;
typedef std::list<Path> Paths;
typedef std::set<Path> PathSet;
typedef std::vector<std::pair<std::string, std::string>> Headers;
/**
* Helper class to run code at startup.
*/
template<typename T>
struct OnStartup
{
OnStartup(T && t) { t(); }
};
/**
* Wrap bools to prevent string literals (i.e. 'char *') from being
* cast to a bool in Attr.
*/
template<typename T>
struct Explicit {
T t;
bool operator ==(const Explicit<T> & other) const
{
return t == other.t;
}
};
/**
* Get a value for the specified key from an associate container.
*/
template <class T>
const typename T::mapped_type * get(const T & map, const typename T::key_type & key)
{
auto i = map.find(key);
if (i == map.end()) return nullptr;
return &i->second;
}
template <class T>
typename T::mapped_type * get(T & map, const typename T::key_type & key)
{
auto i = map.find(key);
if (i == map.end()) return nullptr;
return &i->second;
}
/**
* Get a value for the specified key from an associate container, or a default value if the key isn't present.
*/
template <class T>
const typename T::mapped_type & getOr(T & map,
const typename T::key_type & key,
const typename T::mapped_type & defaultValue)
{
auto i = map.find(key);
if (i == map.end()) return defaultValue;
return i->second;
}
/**
* Remove and return the first item from a container.
*/
template <class T>
std::optional<typename T::value_type> remove_begin(T & c)
{
auto i = c.begin();
if (i == c.end()) return {};
auto v = std::move(*i);
c.erase(i);
return v;
}
/**
* Remove and return the first item from a container.
*/
template <class T>
std::optional<typename T::value_type> pop(T & c)
{
if (c.empty()) return {};
auto v = std::move(c.front());
c.pop();
return v;
}
/**
* A RAII helper that increments a counter on construction and
* decrements it on destruction.
*/
template<typename T>
struct MaintainCount
{
T & counter;
long delta;
MaintainCount(T & counter, long delta = 1) : counter(counter), delta(delta) { counter += delta; }
~MaintainCount() { counter -= delta; }
};
/**
* A Rust/Python-like enumerate() iterator adapter.
*
* Borrowed from http://reedbeta.com/blog/python-like-enumerate-in-cpp17.
*/
template <typename T,
typename TIter = decltype(std::begin(std::declval<T>())),
typename = decltype(std::end(std::declval<T>()))>
constexpr auto enumerate(T && iterable)
{
struct iterator
{
size_t i;
TIter iter;
constexpr bool operator != (const iterator & other) const { return iter != other.iter; }
constexpr void operator ++ () { ++i; ++iter; }
constexpr auto operator * () const { return std::tie(i, *iter); }
};
struct iterable_wrapper
{
T iterable;
constexpr auto begin() { return iterator{ 0, std::begin(iterable) }; }
constexpr auto end() { return iterator{ 0, std::end(iterable) }; }
};
return iterable_wrapper{ std::forward<T>(iterable) };
}
/**
* C++17 std::visit boilerplate
*/
template<class... Ts> struct overloaded : Ts... { using Ts::operator()...; };
template<class... Ts> overloaded(Ts...) -> overloaded<Ts...>;
/**
* This wants to be a little bit like rust's Cow type.
* Some parts of the evaluator benefit greatly from being able to reuse
* existing allocations for strings, but have to be able to also use
* newly allocated storage for values.
*
* We do not define implicit conversions, even with ref qualifiers,
* since those can easily become ambiguous to the reader and can degrade
* into copying behaviour we want to avoid.
*/
class BackedStringView {
private:
std::variant<std::string, std::string_view> data;
/**
* Needed to introduce a temporary since operator-> must return
* a pointer. Without this we'd need to store the view object
* even when we already own a string.
*/
class Ptr {
private:
std::string_view view;
public:
Ptr(std::string_view view): view(view) {}
const std::string_view * operator->() const { return &view; }
};
public:
BackedStringView(std::string && s): data(std::move(s)) {}
BackedStringView(std::string_view sv): data(sv) {}
template<size_t N>
BackedStringView(const char (& lit)[N]): data(std::string_view(lit)) {}
BackedStringView(const BackedStringView &) = delete;
BackedStringView & operator=(const BackedStringView &) = delete;
/**
* We only want move operations defined since the sole purpose of
* this type is to avoid copies.
*/
BackedStringView(BackedStringView && other) = default;
BackedStringView & operator=(BackedStringView && other) = default;
bool isOwned() const
{
return std::holds_alternative<std::string>(data);
}
std::string toOwned() &&
{
return isOwned()
? std::move(std::get<std::string>(data))
: std::string(std::get<std::string_view>(data));
}
std::string_view operator*() const
{
return isOwned()
? std::get<std::string>(data)
: std::get<std::string_view>(data);
}
Ptr operator->() const { return Ptr(**this); }
};
}
|