1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
// Copyright (C) 2019 Oscar Shrimpton
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation, either version 3 of the License, or (at your option)
// any later version.
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
// You should have received a copy of the GNU General Public License along
// with this program. If not, see <http://www.gnu.org/licenses/>.
use std::ops::{Index, IndexMut};
use std::convert::TryInto;
use core::mem::{ManuallyDrop, size_of};
use hal::prelude::*;
use hal::{
MemoryTypeId,
buffer::Usage,
memory::{Properties, Segment},
queue::Submission
};
use crate::error::CreationError;
use crate::types::*;
fn create_buffer(device: &mut Device,
adapter: &Adapter,
usage: Usage,
properties: Properties,
size: u64) -> Result<(Buffer, Memory), CreationError> {
let mut buffer = unsafe { device
.create_buffer(size, usage) }
.map_err(|e| CreationError::BufferError (e))?;
let requirements = unsafe { device.get_buffer_requirements(&buffer) };
let memory_type_id = adapter.physical_device
.memory_properties().memory_types
.iter().enumerate()
.find(|&(id, memory_type)| {
requirements.type_mask & (1 << id) != 0 && memory_type.properties.contains(properties)
})
.map(|(id, _)| MemoryTypeId(id))
.ok_or(CreationError::BufferNoMemory)?;
let memory = unsafe {device
.allocate_memory(memory_type_id, requirements.size) }
.map_err(|_| CreationError::OutOfMemoryError)?;
unsafe { device
.bind_buffer_memory(&memory, 0, &mut buffer) }
.map_err(|_| CreationError::BufferNoMemory)?;
Ok((buffer, memory
))
}
pub trait ModifiableBuffer: IndexMut<usize> {
fn commit<'a>(&'a mut self, device: &Device,
command_queue: &mut CommandQueue,
command_pool: &mut CommandPool) -> &'a Buffer;
}
pub struct StagedBuffer<'a, T: Sized> {
staged_buffer: ManuallyDrop<Buffer>,
staged_memory: ManuallyDrop<Memory>,
buffer: ManuallyDrop<Buffer>,
memory: ManuallyDrop<Memory>,
staged_mapped_memory: &'a mut [T],
staged_is_dirty: bool,
pub highest_used: usize
}
impl<'a, T: Sized> StagedBuffer<'a, T> {
/// size is the size in T
pub fn new(device: &mut Device, adapter: &Adapter, usage: Usage, size: u64) -> Result<Self, CreationError> {
let size_bytes = size * size_of::<T>() as u64;
let (staged_buffer, staged_memory) = create_buffer(device, adapter, Usage::TRANSFER_SRC, Properties::CPU_VISIBLE, size_bytes)?;
let (buffer, memory) = create_buffer(device, adapter, Usage::TRANSFER_DST | usage, Properties::DEVICE_LOCAL, size_bytes)?;
// Map it somewhere and get a slice to that memory
let staged_mapped_memory = unsafe {
let ptr = device.map_memory(&staged_memory, Segment::ALL).unwrap();
std::slice::from_raw_parts_mut(ptr as *mut T, size.try_into().unwrap())
};
Ok(StagedBuffer {
staged_buffer: ManuallyDrop::new(staged_buffer),
staged_memory: ManuallyDrop::new(staged_memory),
buffer: ManuallyDrop::new(buffer),
memory: ManuallyDrop::new(memory),
staged_mapped_memory,
staged_is_dirty: false,
highest_used: 0
})
}
pub(crate) fn deactivate(mut self, device: &mut Device) {
unsafe {
device.unmap_memory(&self.staged_memory);
device.free_memory(ManuallyDrop::take(&mut self.staged_memory));
device.destroy_buffer(ManuallyDrop::take(&mut self.staged_buffer));
device.free_memory(ManuallyDrop::take(&mut self.memory));
device.destroy_buffer(ManuallyDrop::take(&mut self.buffer));
};
}
}
impl <'a, T: Sized> ModifiableBuffer for StagedBuffer<'a, T> {
fn commit<'b>(&'b mut self, device: &Device,
command_queue: &mut CommandQueue,
command_pool: &mut CommandPool) -> &'b Buffer {
if self.staged_is_dirty {
// Copy from staged to buffer
let buf = unsafe {
use hal::command::{CommandBufferFlags, BufferCopy};
// Get a command buffer
let mut buf = command_pool.allocate_one(hal::command::Level::Primary);
// Put in our copy command
buf.begin_primary(CommandBufferFlags::ONE_TIME_SUBMIT);
buf.copy_buffer(&self.staged_buffer, &self.buffer, &[
BufferCopy {
src: 0,
dst: 0,
size: (self.staged_mapped_memory.len() * size_of::<T>()) as u64
}
]);
buf.finish();
buf
};
// Submit it and wait for completion
// TODO: We could use more semaphores or something?
// TODO: Better error handling
unsafe {
let copy_finished = device.create_fence(false).unwrap();
command_queue.submit::<_, _, Semaphore, _, _>(Submission {
command_buffers: &[&buf],
wait_semaphores: std::iter::empty::<_>(),
signal_semaphores: std::iter::empty::<_>()
}, Some(©_finished));
device
.wait_for_fence(©_finished, core::u64::MAX).unwrap();
device.destroy_fence(copy_finished);
}
self.staged_is_dirty = false;
}
&self.buffer
}
}
impl<'a, T: Sized> Index<usize> for StagedBuffer<'a, T> {
type Output = T;
fn index(&self, index: usize) -> &Self::Output {
&self.staged_mapped_memory[index]
}
}
impl<'a, T: Sized> IndexMut<usize> for StagedBuffer<'a, T> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
self.staged_is_dirty = true;
if index > self.highest_used {
self.highest_used = index;
}
&mut self.staged_mapped_memory[index]
}
}
// trait VertexLump {
// pub fn new(device: &mut Device, adapter: &Adapter<back::Backend>) -> Result<Self, CreationError> {
// }
// pub(crate) struct VertexLump<T: Into<X>, X: Pod> {
// pub (crate) buffer: ManuallyDrop<Buffer>,
// memory: ManuallyDrop<Memory>,
// requirements: Requirements,
// unit_size_bytes: u64,
// unit_size_verts: u64,
// batch_size: u64,
// num_batches: usize,
// /// An instance is active if it has been assigned to
// pub active_instances: Range<InstanceCount>,
// pub active_verts: Range<VertexCount>,
// active: bool,
// _t: PhantomData<T>,
// _x: PhantomData<X>
// }
// const BATCH_SIZE: u64 = 3;
// impl<T: Into<X>, X: Pod> VertexLump<T, X> {
// pub fn new(device: &mut Device, adapter: &Adapter<back::Backend>) -> Result<VertexLump<T, X>, CreationError> {
// let unit_size_bytes = size_of::<X>() as u64;
// let unit_size_verts = unit_size_bytes / size_of::<f32>() as u64;
// let mut buffer = unsafe { device
// .create_buffer(BATCH_SIZE * unit_size_bytes, Usage::VERTEX) }
// .map_err(|e| CreationError::BufferError (e))?;
// let requirements = unsafe { device.get_buffer_requirements(&buffer) };
// let memory_type_id = adapter.physical_device
// .memory_properties().memory_types
// .iter().enumerate()
// .find(|&(id, memory_type)| {
// requirements.type_mask & (1 << id) != 0 && memory_type.properties.contains(Properties::CPU_VISIBLE)
// })
// .map(|(id, _)| MemoryTypeId(id))
// .ok_or(CreationError::BufferNoMemory)?;
// let memory = unsafe {device
// .allocate_memory(memory_type_id, requirements.size) }
// .map_err(|_| CreationError::OutOfMemoryError)?;
// unsafe { device
// .bind_buffer_memory(&memory, 0, &mut buffer) }
// .map_err(|_| CreationError::BufferNoMemory)?;
// Ok(VertexLump {
// buffer: ManuallyDrop::new(buffer),
// memory: ManuallyDrop::new(memory),
// requirements,
// active_verts: 0..0,
// active_instances: 0..0,
// num_batches: 1,
// unit_size_bytes,
// unit_size_verts,
// batch_size: BATCH_SIZE, // TODO
// active: true,
// _t: PhantomData,
// _x: PhantomData
// })
// }
// pub fn set_active_instances(&mut self, range: Range<InstanceCount>) {
// let count: u64 = (range.end - range.start).into();
// let size_verts: u32 = (count * self.unit_size_verts).try_into().unwrap();
// self.active_verts = range.start * size_verts..range.end * size_verts;
// self.active_instances = range;
// }
// pub fn add(&mut self, tri: T, ctx: &mut RenderingContext) -> Result<(), ()> {
// // figure out where to put it
// let idx: usize = (self.active_instances.end).try_into().unwrap();
// let batch_size: usize = self.batch_size.try_into().unwrap();
// let max_size: usize = self.num_batches * batch_size;
// // make sure correct size
// if idx >= max_size {
// self.num_batches += 1;
// debug!("Reallocating Vertex buffer to {} batches ({} instances)", self.num_batches, self.num_batches as u64 * self.batch_size);
// // get new buffer
// let (new_buffer, new_requirements, new_memory) = {
// let mut buffer = ManuallyDrop::new(unsafe { ctx.device
// .create_buffer(self.batch_size * self.unit_size_bytes * self.num_batches as u64, Usage::VERTEX) }
// .map_err(|_| ())?
// );
// let requirements = unsafe { ctx.device.get_buffer_requirements(&buffer) };
// let memory_type_id = ctx.adapter.physical_device
// .memory_properties().memory_types
// .iter().enumerate()
// .find(|&(id, memory_type)| {
// requirements.type_mask & (1 << id) != 0 && memory_type.properties.contains(Properties::CPU_VISIBLE)
// })
// .map(|(id, _)| MemoryTypeId(id))
// .ok_or(())?;
// let memory = ManuallyDrop::new(unsafe { ctx.device
// .allocate_memory(memory_type_id, requirements.size) }
// .map_err(|_| ())?);
// unsafe { ctx.device
// .bind_buffer_memory(&memory, 0, &mut buffer) }
// .map_err(|_| ())?;
// (buffer, requirements, memory)
// };
// // copy vertices
// unsafe {
// let copy_range = 0..self.requirements.size;
// trace!("Copying {:?} from old buffer to new buffer", copy_range);
// let reader = ctx.device.acquire_mapping_reader::<u8>(&*(self.memory), copy_range.clone())
// .map_err(|_| ())?;
// let mut writer = ctx.device.acquire_mapping_writer::<u8>(&new_memory, copy_range.clone())
// .map_err(|_| ())?;
// let copy_range: Range<usize> = 0..self.requirements.size.try_into().unwrap();
// writer[copy_range.clone()].copy_from_slice(&reader[copy_range.clone()]);
// ctx.device.release_mapping_reader(reader);
// ctx.device.release_mapping_writer(writer).map_err(|_| ())?;
// };
// // destroy old buffer
// self.deactivate(ctx);
// // use new one
// self.buffer = new_buffer;
// self.requirements = new_requirements;
// self.memory = new_memory;
// self.active = true;
// }
// {
// // acquire writer
// let mut writer = self.writer(ctx)?;
// // write to it
// writer[idx] = tri.into();
// }
// // activate new triangle
// let new_range = self.active_instances.start..self.active_instances.end + 1;
// self.set_active_instances(new_range);
// Ok(())
// }
// pub(crate) fn writer<'a>(&'a mut self, ctx: &'a mut RenderingContext) -> Result<VertexWriter<'a, X>, ()> {
// let mapping_writer = unsafe { ctx.device
// .acquire_mapping_writer(&*(self.memory), 0..self.requirements.size)
// .map_err(|_| ())? };
// Ok(VertexWriter {
// mapping_writer: ManuallyDrop::new(mapping_writer),
// ctx
// })
// }
// }
|