1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
use crate::draw::buffer::create_buffer;
use gfx_hal::{format::Aspects, memory::Properties, queue::Submission, MemoryTypeId};
use hal::{
buffer::Usage as BufUsage,
format::{Format, Swizzle},
image::{SubresourceRange, Usage, ViewKind},
memory,
};
use std::convert::TryInto;
use crate::types::*;
use hal::prelude::*;
use std::mem::ManuallyDrop;
use super::texture::{LoadableImage, PIXEL_SIZE};
/// Holds an image that's loaded into GPU memory dedicated only to that image, bypassing the memory allocator.
pub struct DedicatedLoadedImage {
/// The GPU Image handle
image: ManuallyDrop<Image>,
/// The full view of the image
pub image_view: ManuallyDrop<ImageView>,
/// The memory backing the image
memory: ManuallyDrop<Memory>,
}
impl DedicatedLoadedImage {
pub fn new(
device: &mut Device,
adapter: &Adapter,
format: Format,
usage: Usage,
resources: SubresourceRange,
width: usize,
height: usize,
) -> Result<DedicatedLoadedImage, &'static str> {
let (memory, image_ref) = {
// Round up the size to align properly
let initial_row_size = PIXEL_SIZE * width;
let limits = adapter.physical_device.limits();
let row_alignment_mask = limits.optimal_buffer_copy_pitch_alignment as u32 - 1;
let row_size =
((initial_row_size as u32 + row_alignment_mask) & !row_alignment_mask) as usize;
debug_assert!(row_size as usize >= initial_row_size);
// Make the image
let mut image_ref = unsafe {
use hal::image::{Kind, Tiling, ViewCapabilities};
device.create_image(
Kind::D2(width as u32, height as u32, 1, 1),
1,
format,
Tiling::Optimal,
usage,
ViewCapabilities::empty(),
)
}
.map_err(|_| "Couldn't create image")?;
// Allocate memory
// Allocate memory
let memory = unsafe {
let requirements = device.get_image_requirements(&image_ref);
let memory_type_id = adapter
.physical_device
.memory_properties()
.memory_types
.iter()
.enumerate()
.find(|&(id, memory_type)| {
requirements.type_mask & (1 << id) != 0
&& memory_type.properties.contains(Properties::DEVICE_LOCAL)
})
.map(|(id, _)| MemoryTypeId(id))
.ok_or("Couldn't find a memory type for image memory")?;
let memory = device
.allocate_memory(memory_type_id, requirements.size)
.map_err(|_| "Couldn't allocate image memory")?;
device
.bind_image_memory(&memory, 0, &mut image_ref)
.map_err(|_| "Couldn't bind memory to image")?;
Ok(memory)
}?;
Ok((memory, image_ref))
}?;
// Create ImageView and sampler
let image_view = unsafe {
device.create_image_view(&image_ref, ViewKind::D2, format, Swizzle::NO, resources)
}
.map_err(|_| "Couldn't create the image view!")?;
Ok(DedicatedLoadedImage {
image: ManuallyDrop::new(image_ref),
image_view: ManuallyDrop::new(image_view),
memory: ManuallyDrop::new(memory),
})
}
/// Load the given image
pub fn load<T: LoadableImage>(
&mut self,
img: T,
device: &mut Device,
adapter: &Adapter,
command_queue: &mut CommandQueue,
command_pool: &mut CommandPool,
) -> Result<(), &'static str> {
let initial_row_size = PIXEL_SIZE * img.width() as usize;
let limits = adapter.physical_device.limits();
let row_alignment_mask = limits.optimal_buffer_copy_pitch_alignment as u32 - 1;
let row_size =
((initial_row_size as u32 + row_alignment_mask) & !row_alignment_mask) as usize;
let total_size = (row_size * (img.height() as usize)) as u64;
debug_assert!(row_size as usize >= initial_row_size);
// Make a staging buffer
let (staging_buffer, staging_memory) = create_buffer(
device,
adapter,
BufUsage::TRANSFER_SRC,
memory::Properties::CPU_VISIBLE | memory::Properties::COHERENT,
total_size,
)
.map_err(|_| "Couldn't create staging buffer")?;
// Copy everything into it
unsafe {
let mapped_memory: *mut u8 = std::mem::transmute(
device
.map_memory(&staging_memory, 0..total_size)
.map_err(|_| "Couldn't map buffer memory")?,
);
for y in 0..img.height() as usize {
let dest_base: isize = (y * row_size).try_into().unwrap();
img.copy_row(y as u32, mapped_memory.offset(dest_base));
}
device.unmap_memory(&staging_memory);
}
// Copy from staging to image memory
let buf = unsafe {
use hal::command::{BufferImageCopy, CommandBufferFlags};
use hal::image::{Access, Extent, Layout, Offset, SubresourceLayers};
use hal::memory::Barrier;
use hal::pso::PipelineStage;
// Get a command buffer
let mut buf = command_pool.allocate_one(hal::command::Level::Primary);
buf.begin_primary(CommandBufferFlags::ONE_TIME_SUBMIT);
// Setup the layout of our image for copying
let image_barrier = Barrier::Image {
states: (Access::empty(), Layout::Undefined)
..(Access::TRANSFER_WRITE, Layout::TransferDstOptimal),
target: &(*self.image),
families: None,
range: SubresourceRange {
aspects: Aspects::COLOR,
levels: 0..1,
layers: 0..1,
},
};
buf.pipeline_barrier(
PipelineStage::TOP_OF_PIPE..PipelineStage::TRANSFER,
memory::Dependencies::empty(),
&[image_barrier],
);
// Copy from buffer to image
buf.copy_buffer_to_image(
&staging_buffer,
&(*self.image),
Layout::TransferDstOptimal,
&[BufferImageCopy {
buffer_offset: 0,
buffer_width: (row_size / PIXEL_SIZE) as u32,
buffer_height: img.height(),
image_layers: SubresourceLayers {
aspects: Aspects::COLOR,
level: 0,
layers: 0..1,
},
image_offset: Offset { x: 0, y: 0, z: 0 },
image_extent: Extent {
width: img.width(),
height: img.height(),
depth: 1,
},
}],
);
// Setup the layout of our image for shaders
let image_barrier = Barrier::Image {
states: (Access::TRANSFER_WRITE, Layout::TransferDstOptimal)
..(Access::SHADER_READ, Layout::ShaderReadOnlyOptimal),
target: &(*self.image),
families: None,
range: SubresourceRange {
aspects: Aspects::COLOR,
levels: 0..1,
layers: 0..1,
},
};
buf.pipeline_barrier(
PipelineStage::TRANSFER..PipelineStage::FRAGMENT_SHADER,
memory::Dependencies::empty(),
&[image_barrier],
);
buf.finish();
buf
};
// Submit our commands and wait for them to finish
unsafe {
let setup_finished = device.create_fence(false).unwrap();
command_queue.submit::<_, _, Semaphore, _, _>(
Submission {
command_buffers: &[&buf],
wait_semaphores: std::iter::empty::<_>(),
signal_semaphores: std::iter::empty::<_>(),
},
Some(&setup_finished),
);
device
.wait_for_fence(&setup_finished, core::u64::MAX)
.unwrap();
device.destroy_fence(setup_finished);
};
// Clean up temp resources
unsafe {
command_pool.free(std::iter::once(buf));
device.free_memory(staging_memory);
device.destroy_buffer(staging_buffer);
}
Ok(())
}
/// Load the given image into a new buffer
pub fn load_into_new<T: LoadableImage>(
img: T,
device: &mut Device,
adapter: &Adapter,
command_queue: &mut CommandQueue,
command_pool: &mut CommandPool,
format: Format,
usage: Usage,
) -> Result<DedicatedLoadedImage, &'static str> {
let mut loaded_image = Self::new(
device,
adapter,
format,
usage | Usage::TRANSFER_DST,
SubresourceRange {
aspects: Aspects::COLOR,
levels: 0..1,
layers: 0..1,
},
img.width() as usize,
img.height() as usize,
)?;
loaded_image.load(img, device, adapter, command_queue, command_pool)?;
Ok(loaded_image)
}
/// Properly frees/destroys all the objects in this struct
/// Dropping without doing this is a bad idea
pub fn deactivate(self, device: &mut Device) {
unsafe {
use core::ptr::read;
device.destroy_image_view(ManuallyDrop::into_inner(read(&self.image_view)));
device.destroy_image(ManuallyDrop::into_inner(read(&self.image)));
device.free_memory(ManuallyDrop::into_inner(read(&self.memory)));
}
}
}
|