1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
/*
* Copyright (C) Oscar Shrimpton 2020
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//! Deals with loading textures into GPU memory
use super::chunk::TextureChunk;
use crate::draw::texture::chunk::CHUNK_SIZE;
use crate::draw::texture::image::LoadableImage;
use crate::draw::texture::resolver::BasicFSResolver;
use core::mem::ManuallyDrop;
use std::path::Path;
use log::debug;
use hal::prelude::*;
use stockton_levels::prelude::*;
use crate::error;
use crate::types::*;
/// Stores all loaded textures in GPU memory.
/// When rendering, the descriptor sets are bound to the buffer
/// The descriptor set layout should have the same count of textures as this does.
/// All descriptors will be properly initialised images.
pub struct TextureStore {
descriptor_pool: ManuallyDrop<DescriptorPool>,
pub(crate) descriptor_set_layout: ManuallyDrop<DescriptorSetLayout>,
chunks: Box<[TextureChunk]>,
}
impl TextureStore {
pub fn new_empty(
device: &mut Device,
adapter: &mut Adapter,
allocator: &mut DynamicAllocator,
command_queue: &mut CommandQueue,
command_pool: &mut CommandPool,
size: usize,
) -> Result<TextureStore, error::CreationError> {
// Figure out how many textures in this file / how many chunks needed
let num_chunks = {
let mut x = size / CHUNK_SIZE;
if size % CHUNK_SIZE != 0 {
x += 1;
}
x
};
let rounded_size = num_chunks * CHUNK_SIZE;
// Descriptor pool, where we get our sets from
let mut descriptor_pool = unsafe {
use hal::pso::{
DescriptorPoolCreateFlags, DescriptorRangeDesc, DescriptorType,
};
device
.create_descriptor_pool(
num_chunks,
&[
DescriptorRangeDesc {
ty: DescriptorType::SampledImage,
count: rounded_size,
},
DescriptorRangeDesc {
ty: DescriptorType::Sampler,
count: rounded_size,
},
],
DescriptorPoolCreateFlags::empty(),
)
.map_err(|e| {
println!("{:?}", e);
error::CreationError::OutOfMemoryError
})?
};
// Layout of our descriptor sets
let descriptor_set_layout = unsafe {
use hal::pso::{
DescriptorSetLayoutBinding, DescriptorType, ShaderStageFlags,
};
device.create_descriptor_set_layout(
&[
DescriptorSetLayoutBinding {
binding: 0,
ty: DescriptorType::SampledImage,
count: CHUNK_SIZE,
stage_flags: ShaderStageFlags::FRAGMENT,
immutable_samplers: false,
},
DescriptorSetLayoutBinding {
binding: 1,
ty: DescriptorType::Sampler,
count: CHUNK_SIZE,
stage_flags: ShaderStageFlags::FRAGMENT,
immutable_samplers: false,
},
],
&[],
)
}
.map_err(|_| error::CreationError::OutOfMemoryError)?;
log::debug!("texture ds layout: {:?}", descriptor_set_layout);
// Create texture chunks
debug!("Starting to load textures...");
let mut chunks = Vec::with_capacity(num_chunks);
for i in 0..num_chunks {
debug!("Chunk {} / {}", i + 1, num_chunks);
let descriptor_set = unsafe {
descriptor_pool
.allocate_set(&descriptor_set_layout)
.map_err(|_| error::CreationError::OutOfMemoryError)?
};
chunks.push(TextureChunk::new_empty(
device,
adapter,
allocator,
command_queue,
command_pool,
descriptor_set,
)?);
}
debug!("All textures loaded.");
Ok(TextureStore {
descriptor_pool: ManuallyDrop::new(descriptor_pool),
descriptor_set_layout: ManuallyDrop::new(descriptor_set_layout),
chunks: chunks.into_boxed_slice(),
})
}
/// Create a new texture store for the given file, loading all textures from it.
pub fn new<T: HasTextures>(
device: &mut Device,
adapter: &mut Adapter,
allocator: &mut DynamicAllocator,
command_queue: &mut CommandQueue,
command_pool: &mut CommandPool,
file: &T,
) -> Result<TextureStore, error::CreationError> {
// Figure out how many textures in this file / how many chunks needed
let size = file.textures_iter().count();
let num_chunks = {
let mut x = size / CHUNK_SIZE;
if size % CHUNK_SIZE != 0 {
x += 1;
}
x
};
let rounded_size = num_chunks * CHUNK_SIZE;
// Descriptor pool, where we get our sets from
let mut descriptor_pool = unsafe {
use hal::pso::{
DescriptorPoolCreateFlags, DescriptorRangeDesc, DescriptorType,
};
device
.create_descriptor_pool(
num_chunks,
&[
DescriptorRangeDesc {
ty: DescriptorType::SampledImage,
count: rounded_size,
},
DescriptorRangeDesc {
ty: DescriptorType::Sampler,
count: rounded_size,
},
],
DescriptorPoolCreateFlags::empty(),
)
.map_err(|e| {
println!("{:?}", e);
error::CreationError::OutOfMemoryError
})?
};
// Layout of our descriptor sets
let descriptor_set_layout = unsafe {
use hal::pso::{
DescriptorSetLayoutBinding, DescriptorType, ShaderStageFlags,
};
device.create_descriptor_set_layout(
&[
DescriptorSetLayoutBinding {
binding: 0,
ty: DescriptorType::SampledImage,
count: CHUNK_SIZE,
stage_flags: ShaderStageFlags::FRAGMENT,
immutable_samplers: false,
},
DescriptorSetLayoutBinding {
binding: 1,
ty: DescriptorType::Sampler,
count: CHUNK_SIZE,
stage_flags: ShaderStageFlags::FRAGMENT,
immutable_samplers: false,
},
],
&[],
)
}
.map_err(|_| error::CreationError::OutOfMemoryError)?;
// TODO: Proper way to set up resolver
let mut resolver = BasicFSResolver::new(Path::new("."));
// Create texture chunks
debug!("Starting to load textures...");
let mut chunks = Vec::with_capacity(num_chunks);
for i in 0..num_chunks {
debug!("Chunk {} / {}", i + 1, num_chunks);
let descriptor_set = unsafe {
descriptor_pool
.allocate_set(&descriptor_set_layout)
.map_err(|_| error::CreationError::OutOfMemoryError)?
};
chunks.push(TextureChunk::new(
device,
adapter,
allocator,
command_queue,
command_pool,
descriptor_set,
file.textures_iter().skip(i * CHUNK_SIZE).take(CHUNK_SIZE),
&mut resolver,
)?);
}
debug!("All textures loaded.");
Ok(TextureStore {
descriptor_pool: ManuallyDrop::new(descriptor_pool),
descriptor_set_layout: ManuallyDrop::new(descriptor_set_layout),
chunks: chunks.into_boxed_slice(),
})
}
/// Call this before dropping
pub fn deactivate(mut self, device: &mut Device, allocator: &mut DynamicAllocator) {
unsafe {
use core::ptr::read;
for chunk in self.chunks.into_vec().drain(..) {
chunk.deactivate(device, allocator);
}
self.descriptor_pool.reset();
device.destroy_descriptor_set_layout(ManuallyDrop::into_inner(read(
&self.descriptor_set_layout,
)));
device.destroy_descriptor_pool(ManuallyDrop::into_inner(read(&self.descriptor_pool)));
}
}
/// Get the descriptor set for a given chunk
pub fn get_chunk_descriptor_set(&self, idx: usize) -> &DescriptorSet {
&self.chunks[idx].descriptor_set
}
pub fn put_texture<T: LoadableImage>(
&mut self,
idx: usize,
img: T,
device: &mut Device,
adapter: &mut Adapter,
allocator: &mut DynamicAllocator,
command_queue: &mut CommandQueue,
command_pool: &mut CommandPool,
) -> Result<(), &'static str> {
// TODO: Resizing, etc?
let chunk = &mut self.chunks[idx / CHUNK_SIZE];
chunk.put_texture(
img,
idx % CHUNK_SIZE,
device,
adapter,
allocator,
command_queue,
command_pool,
)
}
}
|