aboutsummaryrefslogtreecommitdiff
path: root/stockton-skeleton/src/texture/loader.rs
blob: 5c85fd3284936058d6c2cc2febee3bd7aff431c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
//! Manages the loading/unloading of textures

use super::{
    block::{LoadedImage, TexturesBlock},
    load::{load_image, QueuedLoad, TextureLoadConfig, TextureLoadError, LAYERS, RESOURCES},
    repo::BLOCK_SIZE,
    resolver::TextureResolver,
    PIXEL_SIZE,
};
use crate::{error::LockPoisoned, types::*, utils::find_memory_type_id};

use std::{
    array::IntoIter,
    collections::VecDeque,
    iter::{empty, once},
    mem::{drop, ManuallyDrop},
    sync::{
        mpsc::{Receiver, Sender},
        Arc, RwLock,
    },
    thread::sleep,
    time::Duration,
};

use anyhow::{Context, Result};
use arrayvec::ArrayVec;
use hal::{
    command::{BufferImageCopy, CommandBufferFlags},
    format::{Aspects, Format},
    image::{Access, Extent, Layout, Offset, SubresourceLayers, SubresourceRange},
    memory::{Barrier, Dependencies, Properties as MemProps, SparseFlags},
    pso::{Descriptor, DescriptorSetWrite, ImageDescriptorType, PipelineStage, ShaderStageFlags},
    queue::family::QueueFamilyId,
    MemoryTypeId,
};
use image::{Rgba, RgbaImage};
use log::*;
use rendy_descriptor::{DescriptorRanges, DescriptorSetLayoutBinding, DescriptorType};
use rendy_memory::DynamicConfig;
use thiserror::Error;

/// The number of command buffers to have in flight simultaneously.
pub const NUM_SIMULTANEOUS_CMDS: usize = 2;

/// A reference to a texture of the current map
pub type BlockRef = usize;

/// Manages the loading/unloading of textures
/// This is expected to load the textures, then send the loaded blocks back
pub struct TextureLoader<R: TextureResolver> {
    /// Blocks for which commands have been queued and are done loading once the fence is triggered.
    commands_queued: ArrayVec<[QueuedLoad<DynamicBlock>; NUM_SIMULTANEOUS_CMDS]>,

    /// The command buffers  used and a fence to go with them
    buffers: VecDeque<(FenceT, CommandBufferT)>,

    /// The command pool buffers were allocated from
    pool: ManuallyDrop<CommandPoolT>,

    /// The GPU we're submitting to
    device: Arc<RwLock<DeviceT>>,

    /// The command queue being used
    queue: Arc<RwLock<QueueT>>,

    /// The memory allocator being used for textures
    tex_allocator: ManuallyDrop<DynamicAllocator>,

    /// The memory allocator for staging memory
    staging_allocator: ManuallyDrop<DynamicAllocator>,

    /// Allocator for descriptor sets
    descriptor_allocator: ManuallyDrop<DescriptorAllocator>,

    ds_layout: Arc<RwLock<DescriptorSetLayoutT>>,

    /// Type ID for staging memory
    staging_memory_type: MemoryTypeId,

    /// From adapter, used for determining alignment
    optimal_buffer_copy_pitch_alignment: hal::buffer::Offset,

    /// Configuration for how to find and load textures
    config: TextureLoadConfig<R>,

    /// The channel requests come in.
    /// Requests should reference a texture **block**, for example textures 8..16 is block 1.
    request_channel: Receiver<LoaderRequest>,

    /// The channel blocks are returned to.
    return_channel: Sender<TexturesBlock<DynamicBlock>>,

    /// A filler image for descriptors that aren't needed but still need to be written to
    blank_image: ManuallyDrop<LoadedImage<DynamicBlock>>,
}

#[derive(Error, Debug)]
pub enum TextureLoaderError {
    #[error("Couldn't find a suitable memory type")]
    NoMemoryTypes,
}

impl<R: TextureResolver> TextureLoader<R> {
    pub fn loop_until_exit(mut self) -> Result<TextureLoaderRemains> {
        debug!("TextureLoader starting main loop");
        let mut res = Ok(false);
        while res.is_ok() {
            res = self.main();
            if let Ok(true) = res {
                break;
            }

            sleep(Duration::from_secs(0));
        }

        match res {
            Ok(true) => {
                debug!("Starting to deactivate TextureLoader");

                Ok(self.deactivate())
            }
            Err(r) => Err(r.context("Error in TextureLoader loop")),
            _ => unreachable!(),
        }
    }
    fn main(&mut self) -> Result<bool> {
        let mut device = self
            .device
            .write()
            .map_err(|_| LockPoisoned::Device)
            .context("Error getting device lock")?;
        // Check for blocks that are finished, then send them back
        let mut i = 0;
        while i < self.commands_queued.len() {
            let signalled = unsafe { device.get_fence_status(&self.commands_queued[i].fence) }
                .context("Error checking fence status")?;

            if signalled {
                let (assets, mut staging_bufs, block) = self.commands_queued.remove(i).dissolve();
                debug!("Load finished for texture block {:?}", block.id);

                // Destroy staging buffers
                for buf in staging_bufs.drain(..) {
                    buf.deactivate(&mut device, &mut self.staging_allocator);
                }

                self.buffers.push_back(assets);
                self.return_channel
                    .send(block)
                    .context("Error returning texture block")?;
            } else {
                i += 1;
            }
        }

        drop(device);

        // Check for messages to start loading blocks
        let req_iter: Vec<_> = self.request_channel.try_iter().collect();
        for to_load in req_iter {
            match to_load {
                LoaderRequest::Load(to_load) => {
                    // Attempt to load given block
                    debug!("Attempting to queue load for texture block {:?}", to_load);

                    let result = unsafe { self.attempt_queue_load(to_load) };
                    match result {
                        Ok(queued_load) => self.commands_queued.push(queued_load),
                        Err(x) => match x.downcast_ref::<TextureLoadError>() {
                            Some(TextureLoadError::NoResources) => {
                                debug!("No resources, trying again later");
                            }
                            _ => return Err(x).context("Error queuing texture load"),
                        },
                    }
                }
                LoaderRequest::End => return Ok(true),
            }
        }

        Ok(false)
    }

    pub fn new(
        adapter: &Adapter,
        device_lock: Arc<RwLock<DeviceT>>,
        (family, queue_lock): (QueueFamilyId, Arc<RwLock<QueueT>>),
        ds_layout: Arc<RwLock<DescriptorSetLayoutT>>,
        (request_channel, return_channel): (
            Receiver<LoaderRequest>,
            Sender<TexturesBlock<DynamicBlock>>,
        ),
        config: TextureLoadConfig<R>,
    ) -> Result<Self> {
        let mut device = device_lock
            .write()
            .map_err(|_| LockPoisoned::Device)
            .context("Error getting device lock")?;
        let device_props = adapter.physical_device.properties();

        let type_mask = unsafe {
            use hal::image::{Kind, Tiling, Usage, ViewCapabilities};

            // We create an empty image with the same format as used for textures
            // this is to get the type_mask required, which will stay the same for
            // all colour images of the same tiling. (certain memory flags excluded).

            // Size and alignment don't necessarily stay the same, so we're forced to
            // guess at the alignment for our allocator.

            // TODO: Way to tune these options
            let img = device
                .create_image(
                    Kind::D2(16, 16, 1, 1),
                    1,
                    Format::Rgba8Srgb,
                    Tiling::Optimal,
                    Usage::SAMPLED,
                    SparseFlags::empty(),
                    ViewCapabilities::empty(),
                )
                .context("Error creating test image to get buffer settings")?;

            let type_mask = device.get_image_requirements(&img).type_mask;

            device.destroy_image(img);

            type_mask
        };

        debug!("Using type mask {:?}", type_mask);

        // Tex Allocator
        let mut tex_allocator = {
            let props = MemProps::DEVICE_LOCAL;

            DynamicAllocator::new(
                find_memory_type_id(adapter, type_mask, props)
                    .ok_or(TextureLoaderError::NoMemoryTypes)
                    .context("Couldn't create tex memory allocator")?,
                props,
                DynamicConfig {
                    block_size_granularity: 4 * 32 * 32, // 32x32 image
                    max_chunk_size: u64::pow(2, 63),
                    min_device_allocation: 4 * 32 * 32,
                },
                device_props.limits.non_coherent_atom_size as u64,
            )
        };

        let (staging_memory_type, mut staging_allocator) = {
            let props = MemProps::CPU_VISIBLE | MemProps::COHERENT;
            let t = find_memory_type_id(adapter, u32::MAX, props)
                .ok_or(TextureLoaderError::NoMemoryTypes)
                .context("Couldn't create staging memory allocator")?;
            (
                t,
                DynamicAllocator::new(
                    t,
                    props,
                    DynamicConfig {
                        block_size_granularity: 4 * 32 * 32, // 32x32 image
                        max_chunk_size: u64::pow(2, 63),
                        min_device_allocation: 4 * 32 * 32,
                    },
                    device_props.limits.non_coherent_atom_size as u64,
                ),
            )
        };

        // Pool
        let mut pool = unsafe {
            use hal::pool::CommandPoolCreateFlags;

            device.create_command_pool(family, CommandPoolCreateFlags::RESET_INDIVIDUAL)
        }
        .context("Error creating command pool")?;

        // Command buffers and fences
        debug!("Creating resources...");
        let mut buffers = {
            let mut data = VecDeque::with_capacity(NUM_SIMULTANEOUS_CMDS);

            for _ in 0..NUM_SIMULTANEOUS_CMDS {
                unsafe {
                    data.push_back((
                        device.create_fence(false).context("Error creating fence")?,
                        pool.allocate_one(hal::command::Level::Primary),
                    ));
                };
            }

            data
        };

        let optimal_buffer_copy_pitch_alignment =
            device_props.limits.optimal_buffer_copy_pitch_alignment;

        let blank_image = unsafe {
            Self::get_blank_image(
                &mut device,
                &mut buffers[0].1,
                &queue_lock,
                (&mut staging_allocator, &mut tex_allocator),
                staging_memory_type,
                optimal_buffer_copy_pitch_alignment,
                &config,
            )
        }
        .context("Error creating blank image")?;

        drop(device);

        Ok(TextureLoader {
            commands_queued: ArrayVec::new(),
            buffers,
            pool: ManuallyDrop::new(pool),
            device: device_lock,
            queue: queue_lock,
            ds_layout,

            tex_allocator: ManuallyDrop::new(tex_allocator),
            staging_allocator: ManuallyDrop::new(staging_allocator),
            descriptor_allocator: ManuallyDrop::new(DescriptorAllocator::new()),

            staging_memory_type,
            optimal_buffer_copy_pitch_alignment,

            request_channel,
            return_channel,
            config,
            blank_image: ManuallyDrop::new(blank_image),
        })
    }

    unsafe fn attempt_queue_load(&mut self, block_ref: usize) -> Result<QueuedLoad<DynamicBlock>> {
        let mut device = self
            .device
            .write()
            .map_err(|_| LockPoisoned::Device)
            .context("Error getting device lock")?;

        // Get assets to use
        let (mut fence, mut buf) = self
            .buffers
            .pop_front()
            .ok_or(TextureLoadError::NoResources)
            .context("Error getting resources to use")?;

        // Create descriptor set
        let mut descriptor_set = {
            let mut v: ArrayVec<[RDescriptorSet; 1]> = ArrayVec::new();
            self.descriptor_allocator
                .allocate(
                    &device,
                    &*self
                        .ds_layout
                        .read()
                        .map_err(|_| LockPoisoned::Other)
                        .context("Error reading descriptor set layout")?,
                    DescriptorRanges::from_bindings(&[
                        DescriptorSetLayoutBinding {
                            binding: 0,
                            ty: DescriptorType::Image {
                                ty: ImageDescriptorType::Sampled {
                                    with_sampler: false,
                                },
                            },
                            count: BLOCK_SIZE,
                            stage_flags: ShaderStageFlags::FRAGMENT,
                            immutable_samplers: false,
                        },
                        DescriptorSetLayoutBinding {
                            binding: 1,
                            ty: DescriptorType::Sampler,
                            count: BLOCK_SIZE,
                            stage_flags: ShaderStageFlags::FRAGMENT,
                            immutable_samplers: false,
                        },
                    ]),
                    1,
                    &mut v,
                )
                .context("Error creating descriptor set")?;

            v.pop().unwrap()
        };

        // Get a command buffer
        buf.begin_primary(CommandBufferFlags::ONE_TIME_SUBMIT);

        let mut imgs: ArrayVec<[_; BLOCK_SIZE]> = ArrayVec::new();
        let mut staging_bufs: ArrayVec<[_; BLOCK_SIZE]> = ArrayVec::new();

        // For each texture in block
        for tex_idx in (block_ref * BLOCK_SIZE)..(block_ref + 1) * BLOCK_SIZE {
            // Resolve texture
            let img_data = self.config.resolver.resolve(tex_idx as u32);
            if img_data.is_none() {
                // Write a blank descriptor
                device.write_descriptor_set(DescriptorSetWrite {
                    set: descriptor_set.raw_mut(),
                    binding: 0,
                    array_offset: tex_idx % BLOCK_SIZE,
                    descriptors: once(Descriptor::Image(
                        &*self.blank_image.img_view,
                        Layout::ShaderReadOnlyOptimal,
                    )),
                });
                device.write_descriptor_set(DescriptorSetWrite {
                    set: descriptor_set.raw_mut(),
                    binding: 1,
                    array_offset: tex_idx % BLOCK_SIZE,
                    descriptors: once(Descriptor::Sampler(&*self.blank_image.sampler)),
                });

                continue;
            }

            let img_data = img_data.unwrap();

            let array_offset = tex_idx % BLOCK_SIZE;

            let (staging_buffer, img) = load_image(
                &mut device,
                &mut self.staging_allocator,
                &mut self.tex_allocator,
                self.staging_memory_type,
                self.optimal_buffer_copy_pitch_alignment,
                img_data,
                &self.config,
            )?;

            // Write to descriptor set
            {
                device.write_descriptor_set(DescriptorSetWrite {
                    set: descriptor_set.raw_mut(),
                    binding: 0,
                    array_offset,
                    descriptors: once(Descriptor::Image(
                        &*img.img_view,
                        Layout::ShaderReadOnlyOptimal,
                    )),
                });
                device.write_descriptor_set(DescriptorSetWrite {
                    set: descriptor_set.raw_mut(),
                    binding: 1,
                    array_offset,
                    descriptors: once(Descriptor::Sampler(&*img.sampler)),
                });
            }

            imgs.push(img);

            staging_bufs.push(staging_buffer);
        }

        // Add start pipeline barrier
        buf.pipeline_barrier(
            PipelineStage::TOP_OF_PIPE..PipelineStage::TRANSFER,
            Dependencies::empty(),
            imgs.iter().map(|li| Barrier::Image {
                states: (Access::empty(), Layout::Undefined)
                    ..(Access::TRANSFER_WRITE, Layout::TransferDstOptimal),
                target: &*li.img,
                families: None,
                range: SubresourceRange {
                    aspects: Aspects::COLOR,
                    level_start: 0,
                    level_count: None,
                    layer_start: 0,
                    layer_count: None,
                },
            }),
        );

        // Record copy commands
        for (li, sb) in imgs.iter().zip(staging_bufs.iter()) {
            buf.copy_buffer_to_image(
                &*sb.buf,
                &*li.img,
                Layout::TransferDstOptimal,
                once(BufferImageCopy {
                    buffer_offset: 0,
                    buffer_width: (li.row_size / super::PIXEL_SIZE) as u32,
                    buffer_height: li.height,
                    image_layers: SubresourceLayers {
                        aspects: Aspects::COLOR,
                        level: 0,
                        layers: 0..1,
                    },
                    image_offset: Offset { x: 0, y: 0, z: 0 },
                    image_extent: gfx_hal::image::Extent {
                        width: li.width,
                        height: li.height,
                        depth: 1,
                    },
                }),
            );
        }
        buf.pipeline_barrier(
            PipelineStage::TRANSFER..PipelineStage::BOTTOM_OF_PIPE,
            Dependencies::empty(),
            imgs.iter().map(|li| Barrier::Image {
                states: (Access::TRANSFER_WRITE, Layout::TransferDstOptimal)
                    ..(Access::empty(), Layout::ShaderReadOnlyOptimal),
                target: &*li.img,
                families: None,
                range: RESOURCES,
            }),
        );

        buf.finish();

        // Submit command buffer
        {
            let mut queue = self.queue.write().map_err(|_| LockPoisoned::Queue)?;

            queue.submit(IntoIter::new([&buf]), empty(), empty(), Some(&mut fence));
        }

        Ok(QueuedLoad {
            staging_bufs,
            fence,
            buf,
            block: TexturesBlock {
                id: block_ref,
                imgs,
                descriptor_set: ManuallyDrop::new(descriptor_set),
            },
        })
    }

    unsafe fn get_blank_image(
        device: &mut DeviceT,
        buf: &mut CommandBufferT,
        queue_lock: &Arc<RwLock<QueueT>>,
        (staging_allocator, tex_allocator): (&mut DynamicAllocator, &mut DynamicAllocator),
        staging_memory_type: MemoryTypeId,
        obcpa: u64,
        config: &TextureLoadConfig<R>,
    ) -> Result<LoadedImage<DynamicBlock>> {
        let img_data = RgbaImage::from_pixel(1, 1, Rgba([255, 0, 255, 255]));

        let height = img_data.height();
        let width = img_data.width();
        let row_alignment_mask = obcpa as u32 - 1;
        let initial_row_size = PIXEL_SIZE * img_data.width() as usize;
        let row_size =
            ((initial_row_size as u32 + row_alignment_mask) & !row_alignment_mask) as usize;

        let (staging_buffer, img) = load_image(
            device,
            staging_allocator,
            tex_allocator,
            staging_memory_type,
            obcpa,
            img_data,
            config,
        )?;

        buf.begin_primary(CommandBufferFlags::ONE_TIME_SUBMIT);

        buf.pipeline_barrier(
            PipelineStage::TOP_OF_PIPE..PipelineStage::TRANSFER,
            Dependencies::empty(),
            once(Barrier::Image {
                states: (Access::empty(), Layout::Undefined)
                    ..(Access::TRANSFER_WRITE, Layout::TransferDstOptimal),
                target: &*img.img,
                families: None,
                range: SubresourceRange {
                    aspects: Aspects::COLOR,
                    level_start: 0,
                    level_count: None,
                    layer_start: 0,
                    layer_count: None,
                },
            }),
        );
        buf.copy_buffer_to_image(
            &*staging_buffer.buf,
            &*img.img,
            Layout::TransferDstOptimal,
            once(BufferImageCopy {
                buffer_offset: 0,
                buffer_width: (row_size / super::PIXEL_SIZE) as u32,
                buffer_height: height,
                image_layers: LAYERS,
                image_offset: Offset { x: 0, y: 0, z: 0 },
                image_extent: Extent {
                    width,
                    height,
                    depth: 1,
                },
            }),
        );

        buf.pipeline_barrier(
            PipelineStage::TRANSFER..PipelineStage::BOTTOM_OF_PIPE,
            Dependencies::empty(),
            once(Barrier::Image {
                states: (Access::TRANSFER_WRITE, Layout::TransferDstOptimal)
                    ..(Access::empty(), Layout::ShaderReadOnlyOptimal),
                target: &*img.img,
                families: None,
                range: RESOURCES,
            }),
        );
        buf.finish();

        let mut fence = device.create_fence(false).context("Error creating fence")?;

        {
            let mut queue = queue_lock.write().map_err(|_| LockPoisoned::Queue)?;

            queue.submit(
                IntoIter::new([buf as &CommandBufferT]),
                empty(),
                empty(),
                Some(&mut fence),
            );
        }

        device
            .wait_for_fence(&fence, std::u64::MAX)
            .context("Error waiting for copy")?;

        device.destroy_fence(fence);

        staging_buffer.deactivate(device, staging_allocator);

        Ok(img)
    }

    /// Safely destroy all the vulkan stuff in this instance
    /// Note that this returns the memory allocators, from which should be freed any TextureBlocks
    /// All in-progress things are sent to return_channel.
    fn deactivate(mut self) -> TextureLoaderRemains {
        use std::ptr::read;

        let mut device = self.device.write().unwrap();

        unsafe {
            // Wait for any currently queued loads to be done
            while self.commands_queued.len() > 0 {
                let mut i = 0;
                while i < self.commands_queued.len() {
                    let signalled = device
                        .get_fence_status(&self.commands_queued[i].fence)
                        .expect("Device lost by TextureManager");

                    if signalled {
                        // Destroy finished ones
                        let (assets, mut staging_bufs, block) =
                            self.commands_queued.remove(i).dissolve();

                        device.destroy_fence(assets.0);
                        // Command buffer will be freed when we reset the command pool
                        // Destroy staging buffers
                        for buf in staging_bufs.drain(..) {
                            buf.deactivate(&mut device, &mut self.staging_allocator);
                        }

                        self.return_channel
                            .send(block)
                            .expect("Sending through return channel failed");
                    } else {
                        i += 1;
                    }
                }

                sleep(Duration::from_secs(0));
            }

            // Destroy blank image
            read(&*self.blank_image).deactivate(&mut device, &mut *self.tex_allocator);

            // Destroy fences

            self.buffers
                .drain(..)
                .map(|(f, _)| device.destroy_fence(f))
                .for_each(|_| {});

            // Free command pool
            self.pool.reset(true);
            device.destroy_command_pool(read(&*self.pool));

            debug!("Done deactivating TextureLoader");

            TextureLoaderRemains {
                tex_allocator: ManuallyDrop::new(read(&*self.tex_allocator)),
                descriptor_allocator: ManuallyDrop::new(read(&*self.descriptor_allocator)),
            }
        }
    }
}

pub struct TextureLoaderRemains {
    pub tex_allocator: ManuallyDrop<DynamicAllocator>,
    pub descriptor_allocator: ManuallyDrop<DescriptorAllocator>,
}

pub enum LoaderRequest {
    /// Load the given block
    Load(BlockRef),

    /// Stop looping and deactivate
    End,
}