1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
use super::{
block::TexturesBlock,
load::TextureLoadConfig,
loader::{BlockRef, LoaderRequest, TextureLoader, TextureLoaderRemains, NUM_SIMULTANEOUS_CMDS},
resolver::TextureResolver,
};
use crate::types::*;
use crate::{context::RenderingContext, error::LockPoisoned, mem::MappableBlock};
use crate::{mem::MemoryPool, queue_negotiator::QueueFamilySelector};
use std::{
array::IntoIter,
collections::HashMap,
iter::empty,
marker::PhantomData,
mem::ManuallyDrop,
sync::{
mpsc::{channel, Receiver, Sender},
Arc, RwLock, RwLockReadGuard,
},
thread::JoinHandle,
};
use anyhow::{Context, Result};
use hal::pso::{DescriptorSetLayoutBinding, DescriptorType, ImageDescriptorType, ShaderStageFlags};
use log::debug;
/// The number of textures in one 'block'
/// The textures of the loaded file are divided into blocks of this size.
/// Whenever a texture is needed, the whole block its in is loaded.
pub const BLOCK_SIZE: usize = 8;
/// An easy way to load [`super::LoadableImage`]s into GPU memory using another thread.
/// This assumes each texture has a numeric id, and will group them into blocks of `[BLOCK_SIZE]`,
/// yielding descriptor sets with that many samplers and images.
/// You only need to supply a [`super::resolver::TextureResolver`] and create one from the main thread.
/// Then, use [`get_ds_layout`] in your graphics pipeline.
/// Make sure to call [`process_responses`] every frame.
/// Then, whenever you draw, use [`attempt_get_descriptor_set`] to see if that texture has finished loading,
/// or `queue_load` to start loading it ASAP.
pub struct TextureRepo<TP, SP>
where
TP: MemoryPool,
SP: MemoryPool,
SP::Block: MappableBlock,
{
joiner: ManuallyDrop<JoinHandle<Result<TextureLoaderRemains>>>,
ds_layout: Arc<RwLock<DescriptorSetLayoutT>>,
req_send: Sender<LoaderRequest>,
resp_recv: Receiver<TexturesBlock<TP>>,
blocks: HashMap<BlockRef, Option<TexturesBlock<TP>>>,
_d: PhantomData<(TP, SP)>,
}
impl<TP, SP> TextureRepo<TP, SP>
where
TP: MemoryPool,
SP: MemoryPool,
SP::Block: MappableBlock,
{
/// Create a new TextureRepo from the given context.
/// Q should most likely be [`TexLoadQueue`]
pub fn new<R: 'static + TextureResolver + Send + Sync, Q: QueueFamilySelector>(
context: &mut RenderingContext,
config: TextureLoadConfig<R>,
) -> Result<Self> {
// Create Channels
let (req_send, req_recv) = channel();
let (resp_send, resp_recv) = channel();
let device = context
.device()
.write()
.map_err(|_| LockPoisoned::Device)
.context("Error getting device lock")?;
// Create descriptor set layout
let ds_lock = Arc::new(RwLock::new(
unsafe {
device.create_descriptor_set_layout(
IntoIter::new([
DescriptorSetLayoutBinding {
binding: 0,
ty: DescriptorType::Image {
ty: ImageDescriptorType::Sampled {
with_sampler: false,
},
},
count: BLOCK_SIZE,
stage_flags: ShaderStageFlags::FRAGMENT,
immutable_samplers: false,
},
DescriptorSetLayoutBinding {
binding: 1,
ty: DescriptorType::Sampler,
count: BLOCK_SIZE,
stage_flags: ShaderStageFlags::FRAGMENT,
immutable_samplers: false,
},
]),
empty(),
)
}
.context("Error creating descriptor set layout")?,
));
debug!("Created descriptor set layout {:?}", ds_lock);
drop(device);
let joiner = {
let loader = <TextureLoader<_, TP, SP>>::new::<Q>(
context,
ds_lock.clone(),
(req_recv, resp_send),
config,
)?;
std::thread::spawn(move || loader.loop_until_exit())
};
Ok(TextureRepo {
joiner: ManuallyDrop::new(joiner),
ds_layout: ds_lock,
blocks: HashMap::new(),
req_send,
resp_recv,
_d: PhantomData,
})
}
/// Get the descriptor layout used for each texture descriptor
/// This can be used when creating graphics pipelines.
pub fn get_ds_layout(&self) -> Result<RwLockReadGuard<DescriptorSetLayoutT>> {
self.ds_layout
.read()
.map_err(|_| LockPoisoned::Other)
.context("Error locking descriptor set layout")
}
/// Ask for the given block to be loaded, if it's not already.
pub fn queue_load(&mut self, block_id: BlockRef) -> Result<()> {
if self.blocks.contains_key(&block_id) {
return Ok(());
}
self.force_queue_load(block_id)
}
/// Ask for the given block to be loaded, even if it already has been.
pub fn force_queue_load(&mut self, block_id: BlockRef) -> Result<()> {
self.req_send
.send(LoaderRequest::Load(block_id))
.context("Error queuing texture block load")?;
self.blocks.insert(block_id, None);
Ok(())
}
/// Get the descriptor set for the given block, if it's loaded.
pub fn attempt_get_descriptor_set(&mut self, block_id: BlockRef) -> Option<&DescriptorSetT> {
self.blocks
.get(&block_id)
.and_then(|opt| opt.as_ref().map(|z| z.descriptor_set.raw()))
}
/// Process any textures that just finished loading. This should be called every frame.
pub fn process_responses(&mut self) {
let resp_iter: Vec<_> = self.resp_recv.try_iter().collect();
for resp in resp_iter {
debug!("Got block {:?} back from loader", resp.id);
self.blocks.insert(resp.id, Some(resp));
}
}
/// Destroy all vulkan objects. Should be called before dropping.
pub fn deactivate(mut self, context: &mut RenderingContext) {
unsafe {
use std::ptr::read;
// Join the loader thread
self.req_send.send(LoaderRequest::End).unwrap();
let mut remains = read(&*self.joiner).join().unwrap().unwrap();
// Process any ones that just got done loading
self.process_responses();
let mut tex_allocator = context
.existing_memory_pool::<TP>()
.unwrap()
.write()
.unwrap();
// Only now can we lock device without deadlocking
let mut device = context.device().write().unwrap();
// Return all the texture memory and descriptors.
for (_, v) in self.blocks.drain() {
if let Some(block) = v {
block.deactivate(
&mut device,
&mut *tex_allocator,
&mut remains.descriptor_allocator,
);
}
}
// Dispose of the descriptor allocator
read(&*remains.descriptor_allocator).dispose(&device);
// Deactivate DS Layout
let ds_layout = Arc::try_unwrap(self.ds_layout)
.unwrap()
.into_inner()
.unwrap();
device.destroy_descriptor_set_layout(ds_layout);
}
}
}
/// The queue to use when loading textures
pub struct TexLoadQueue;
impl QueueFamilySelector for TexLoadQueue {
fn is_suitable(&self, family: &QueueFamilyT) -> bool {
family.queue_type().supports_transfer() && family.max_queues() >= NUM_SIMULTANEOUS_CMDS
}
}
|