1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
// Copyright (C) 2019 Oscar Shrimpton
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation, either version 3 of the License, or (at your option)
// any later version.
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
// You should have received a copy of the GNU General Public License along
// with this program. If not, see <http://www.gnu.org/licenses/>.
//! Things related to converting 3D world space to 2D screen space
use std::iter::once;
use hal::prelude::*;
use hal::buffer::Usage;
use na::{look_at_lh, perspective_lh_zo};
use core::mem::ManuallyDrop;
use crate::error;
use crate::types::*;
use super::buffer::{StagedBuffer, ModifiableBuffer};
use stockton_types::{Vector3, Matrix4};
/// Holds settings related to the projection of world space to screen space
/// Also holds maths for generating important matrices
pub struct Camera<'a> {
position: Vector3,
looking_at: Vector3,
up: Vector3,
/// Aspect ratio as a fraction
aspect_ratio: f32,
/// FOV in radians
fov: f32,
/// Near clipping plane (world units)
near: f32,
/// Far clipping plane (world units)
far: f32,
/// Layout of the descriptor set to pass to the shader
pub descriptor_set_layout: ManuallyDrop<DescriptorSetLayout>,
/// Buffer of memory used for passing data to shaders
// TODO: Does this need to be staged?
buffer: ManuallyDrop<StagedBuffer<'a, Matrix4>>,
// TODO: Share descriptor pool with textures?
descriptor_pool: ManuallyDrop<DescriptorPool>,
descriptor_set: DescriptorSet,
/// If true, buffer needs updated
is_dirty: bool
}
impl<'a> Camera<'a> {
/// Return a camera with default settings
// TODO
pub fn defaults(aspect_ratio: f32, device: &mut Device, adapter: &Adapter,
command_queue: &mut CommandQueue,
command_pool: &mut CommandPool) -> Result<Camera<'a>, error::CreationError> {
let descriptor_type = {
use hal::pso::{DescriptorType, BufferDescriptorType, BufferDescriptorFormat};
DescriptorType::Buffer {
ty: BufferDescriptorType::Uniform,
format: BufferDescriptorFormat::Structured {
dynamic_offset: false
}
}
};
// Create set layout
let descriptor_set_layout = unsafe {
use hal::pso::{DescriptorSetLayoutBinding, ShaderStageFlags};
device.create_descriptor_set_layout(
&[
DescriptorSetLayoutBinding {
binding: 0,
ty: descriptor_type,
count: 1,
stage_flags: ShaderStageFlags::VERTEX,
immutable_samplers: false
}
],
&[],
)
}.map_err(|_| error::CreationError::OutOfMemoryError)?;
// Create pool and allocate set
let (descriptor_pool, descriptor_set) = unsafe {
use hal::pso::{DescriptorRangeDesc, DescriptorPoolCreateFlags};
let mut pool = device.create_descriptor_pool(
1,
&[
DescriptorRangeDesc {
ty: descriptor_type,
count: 1
}
],
DescriptorPoolCreateFlags::empty()
).map_err(|_| error::CreationError::OutOfMemoryError)?;
let set = pool.allocate_set(&descriptor_set_layout).map_err(|_| error::CreationError::OutOfMemoryError)?;
(pool, set)
};
// Create buffer for descriptor
let mut buffer = StagedBuffer::new(device, adapter, Usage::UNIFORM, 1)?;
// Bind our buffer to our descriptor set
unsafe {
use hal::pso::{Descriptor, DescriptorSetWrite};
use hal::buffer::SubRange;
device.write_descriptor_sets(once(
DescriptorSetWrite {
set: &descriptor_set,
binding: 0,
array_offset: 0,
descriptors: once(
Descriptor::Buffer(buffer.commit(device, command_queue, command_pool), SubRange::WHOLE)
)
}
));
}
Ok(Camera {
position: Vector3::new(-0.5, 1.5, -1.0),
looking_at: Vector3::new(0.5, 0.5, 0.5),
up: Vector3::new(0.0, 1.0, 0.0),
aspect_ratio,
fov: f32::to_radians(90.0),
near: 0.1,
far: 100.0,
descriptor_set_layout: ManuallyDrop::new(descriptor_set_layout),
buffer: ManuallyDrop::new(buffer),
descriptor_pool: ManuallyDrop::new(descriptor_pool),
descriptor_set: descriptor_set,
is_dirty: true
})
}
/// Returns a matrix that transforms from world space to screen space
pub fn vp_matrix(&self) -> Matrix4 {
// Converts world space to camera space
let view_matrix = look_at_lh(
&self.position,
&self.looking_at,
&self.up
);
// Converts camera space to screen space
let projection_matrix = {
let mut temp = perspective_lh_zo(
self.aspect_ratio,
self.fov,
self.near,
self.far
);
// Vulkan's co-ord system is different from openGLs
temp[(1, 1)] *= -1.0;
temp
};
// Chain them together into a single matrix
projection_matrix * view_matrix
}
pub fn commit<'b>(&'b mut self, device: &Device,
command_queue: &mut CommandQueue,
command_pool: &mut CommandPool) -> &'b DescriptorSet {
// Update buffer if needed
if self.is_dirty {
self.buffer[0] = self.vp_matrix();
self.buffer.commit(device, command_queue, command_pool);
self.is_dirty = false;
}
// Return the descriptor set for matrices
&self.descriptor_set
}
/// This should be called before dropping
pub fn deactivate(mut self, device: &mut Device) -> () {
unsafe {
use core::ptr::read;
ManuallyDrop::into_inner(read(&self.buffer)).deactivate(device);
self.descriptor_pool.reset();
device.destroy_descriptor_pool(ManuallyDrop::into_inner(read(&self.descriptor_pool)));
device.destroy_descriptor_set_layout(ManuallyDrop::into_inner(read(&self.descriptor_set_layout)));
}
}
}
|